{"title":"The cellular basis of meristem development in fern gametophytes.","authors":"Chong Xie, Cankui Zhang, Xing Liu, Yun Zhou","doi":"10.1042/BST20240728","DOIUrl":null,"url":null,"abstract":"<p><p>The life cycle of land plants is characterized by alternating generations of sexual gametophytes and asexual sporophytes. Unlike seed plants, seed-free vascular plants, including ferns, initiate and maintain pluripotent meristems during their gametophyte phase to sustain body expansion and drive the formation of sexual organs for reproduction. This review summarizes meristem development among various fern species during the gametophyte phase, focusing on the cellular basis of meristem initiation, proliferation, and termination. We review the different types of gametophytic meristems in ferns, including apical cell (AC)-based meristems, multicellular apical meristems, and multicellular marginal meristems. We highlight both conserved and lineage-specific patterns of cell division, which are closely associated with these meristem identities and play crucial roles in shaping gametophytic morphology. Additionally, we highlight recent progress in understanding the dynamics of cell division and growth that drive meristem development, through studies that integrate confocal live imaging and computational quantitative analysis. Furthermore, we discuss the influence of environmental and genetic factors on cell division activity in fern gametophytes, including conserved transcriptional regulators that sustain meristem indeterminacy and proliferation in the model fern Ceratopteris richardii.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":"53 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Society transactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BST20240728","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The life cycle of land plants is characterized by alternating generations of sexual gametophytes and asexual sporophytes. Unlike seed plants, seed-free vascular plants, including ferns, initiate and maintain pluripotent meristems during their gametophyte phase to sustain body expansion and drive the formation of sexual organs for reproduction. This review summarizes meristem development among various fern species during the gametophyte phase, focusing on the cellular basis of meristem initiation, proliferation, and termination. We review the different types of gametophytic meristems in ferns, including apical cell (AC)-based meristems, multicellular apical meristems, and multicellular marginal meristems. We highlight both conserved and lineage-specific patterns of cell division, which are closely associated with these meristem identities and play crucial roles in shaping gametophytic morphology. Additionally, we highlight recent progress in understanding the dynamics of cell division and growth that drive meristem development, through studies that integrate confocal live imaging and computational quantitative analysis. Furthermore, we discuss the influence of environmental and genetic factors on cell division activity in fern gametophytes, including conserved transcriptional regulators that sustain meristem indeterminacy and proliferation in the model fern Ceratopteris richardii.
期刊介绍:
Biochemical Society Transactions is the reviews journal of the Biochemical Society. Publishing concise reviews written by experts in the field, providing a timely snapshot of the latest developments across all areas of the molecular and cellular biosciences.
Elevating our authors’ ideas and expertise, each review includes a perspectives section where authors offer comment on the latest advances, a glimpse of future challenges and highlighting the importance of associated research areas in far broader contexts.