Integrating Significant SNPs Identified by GWAS for Genomic Prediction of the Number of Ribs and Carcass Length in Suhuai Pigs.

IF 2.7 2区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Animals Pub Date : 2025-02-02 DOI:10.3390/ani15030412
Kaiyue Liu, Yanzhen Yin, Binbin Wang, Chenxi Liu, Wuduo Zhou, Peipei Niu, Ruihua Huang, Pinghua Li, Qingbo Zhao
{"title":"Integrating Significant SNPs Identified by GWAS for Genomic Prediction of the Number of Ribs and Carcass Length in Suhuai Pigs.","authors":"Kaiyue Liu, Yanzhen Yin, Binbin Wang, Chenxi Liu, Wuduo Zhou, Peipei Niu, Ruihua Huang, Pinghua Li, Qingbo Zhao","doi":"10.3390/ani15030412","DOIUrl":null,"url":null,"abstract":"<p><p>The number of ribs (NRs) and the carcass length (CL) are important economic traits. The traits are usually measured after slaughter. To improve the prediction performance of genomic selection (GS) for NRs and CL, one strategy is to integrate the significant loci identified from whole-genome sequencing (WGS) data by genome-wide association study (GWAS) into the genomic prediction (GP) model. This study investigated the GP of different genomic best linear unbiased prediction (GBLUP) and Bayesian models using chip genotype data, imputed WGS (iWGS) data and modeling significant single-nucleotide polymorphisms (SNPs) in different ways for the GP of NRs and CL in the Suhuai pig population. The prediction accuracy, bias and running time of 15 different GP models were evaluated by 10-fold cross-validation. The prediction accuracy of GBLUP using chip data for NRs and CL was 0.314 ± 0.022 and 0.194 ± 0.040, respectively. For NRs, based on the iWGS data, treating the most significant SNP as fixed effects in the GBLUP model had the highest predictive performance, with a prediction accuracy of 0.528 ± 0.023. For CL, based on the chip data, the model that added all the significant SNPs identified by imputed data by GWAS into the multi-trait GBLUP as the second random additive effect was the highest predictive performance, with a prediction accuracy of 0.305 ± 0.027. This study provides insights into optimizing GP models for small populations with phenotypes that are difficult to measure.</p>","PeriodicalId":7955,"journal":{"name":"Animals","volume":"15 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animals","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/ani15030412","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The number of ribs (NRs) and the carcass length (CL) are important economic traits. The traits are usually measured after slaughter. To improve the prediction performance of genomic selection (GS) for NRs and CL, one strategy is to integrate the significant loci identified from whole-genome sequencing (WGS) data by genome-wide association study (GWAS) into the genomic prediction (GP) model. This study investigated the GP of different genomic best linear unbiased prediction (GBLUP) and Bayesian models using chip genotype data, imputed WGS (iWGS) data and modeling significant single-nucleotide polymorphisms (SNPs) in different ways for the GP of NRs and CL in the Suhuai pig population. The prediction accuracy, bias and running time of 15 different GP models were evaluated by 10-fold cross-validation. The prediction accuracy of GBLUP using chip data for NRs and CL was 0.314 ± 0.022 and 0.194 ± 0.040, respectively. For NRs, based on the iWGS data, treating the most significant SNP as fixed effects in the GBLUP model had the highest predictive performance, with a prediction accuracy of 0.528 ± 0.023. For CL, based on the chip data, the model that added all the significant SNPs identified by imputed data by GWAS into the multi-trait GBLUP as the second random additive effect was the highest predictive performance, with a prediction accuracy of 0.305 ± 0.027. This study provides insights into optimizing GP models for small populations with phenotypes that are difficult to measure.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Animals
Animals Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
4.90
自引率
16.70%
发文量
3015
审稿时长
20.52 days
期刊介绍: Animals (ISSN 2076-2615) is an international and interdisciplinary scholarly open access journal. It publishes original research articles, reviews, communications, and short notes that are relevant to any field of study that involves animals, including zoology, ethnozoology, animal science, animal ethics and animal welfare. However, preference will be given to those articles that provide an understanding of animals within a larger context (i.e., the animals'' interactions with the outside world, including humans). There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental details and/or method of study, must be provided for research articles. Articles submitted that involve subjecting animals to unnecessary pain or suffering will not be accepted, and all articles must be submitted with the necessary ethical approval (please refer to the Ethical Guidelines for more information).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信