Gerard A Tarulli, Patrick R S Tatt, Rhys Howlett, Sara Ord, Stephen R Frankenberg, Andrew J Pask
{"title":"Enrichment of spermatogonial stem cells and staging of the testis cycle in a dasyurid marsupial, the fat-tailed dunnart.","authors":"Gerard A Tarulli, Patrick R S Tatt, Rhys Howlett, Sara Ord, Stephen R Frankenberg, Andrew J Pask","doi":"10.1093/stmcls/sxaf007","DOIUrl":null,"url":null,"abstract":"<p><p>There is increasing interest in use of marsupial models in research, for use in next-generation conservation by improving fitness through genetic modification, and in de-extinction efforts. Specifically this includes dasyurid marsupials such as the Thylacine, Tasmanian devil, quolls and the small rodent-like dunnarts. Technologies for generating genetically modified Australian marsupials remains to be established. Given the need to advance research in this space, the fat-tailed dunnart (Sminthopsis crassicaudata) is being established as a model for marsupial spermatogonial stem cell isolation, modification and testicular transplantation. This species is small (60-90mm body size), polyovulatory (8-12 pups per birth), and can breed in standard rodent facilities when housed in a 12:12 light cycle. To develop the fat tailed dunnart as a model for next-generation marsupial conservation, this study aimed to enrich dunnart spermatogonial stem cells from whole testis digestions using a fluorescent dye technology and fluorescence-activated cell sorting. This approach is not dependent on antibodies or genetic reporter animals that are limiting factors when performing cell sorting on species separated from human and mouse by large evolutionary timescales. This study also assessed development of spermatogonia and spermatogenesis in the fat-tailed dunnart, by making the first definition of the cycle of the seminiferous epithelium in any dasyurid. Overall, this is the first detailed study to assess the cycle of dasyurid spermatogenesis and provides a valuable method to enrich marsupial spermatogonial stem cells for cellular, functional and molecular analysis.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"STEM CELLS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stmcls/sxaf007","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
There is increasing interest in use of marsupial models in research, for use in next-generation conservation by improving fitness through genetic modification, and in de-extinction efforts. Specifically this includes dasyurid marsupials such as the Thylacine, Tasmanian devil, quolls and the small rodent-like dunnarts. Technologies for generating genetically modified Australian marsupials remains to be established. Given the need to advance research in this space, the fat-tailed dunnart (Sminthopsis crassicaudata) is being established as a model for marsupial spermatogonial stem cell isolation, modification and testicular transplantation. This species is small (60-90mm body size), polyovulatory (8-12 pups per birth), and can breed in standard rodent facilities when housed in a 12:12 light cycle. To develop the fat tailed dunnart as a model for next-generation marsupial conservation, this study aimed to enrich dunnart spermatogonial stem cells from whole testis digestions using a fluorescent dye technology and fluorescence-activated cell sorting. This approach is not dependent on antibodies or genetic reporter animals that are limiting factors when performing cell sorting on species separated from human and mouse by large evolutionary timescales. This study also assessed development of spermatogonia and spermatogenesis in the fat-tailed dunnart, by making the first definition of the cycle of the seminiferous epithelium in any dasyurid. Overall, this is the first detailed study to assess the cycle of dasyurid spermatogenesis and provides a valuable method to enrich marsupial spermatogonial stem cells for cellular, functional and molecular analysis.
期刊介绍:
STEM CELLS, a peer reviewed journal published monthly, provides a forum for prompt publication of original investigative papers and concise reviews. STEM CELLS is read and written by clinical and basic scientists whose expertise encompasses the rapidly expanding fields of stem and progenitor cell biology.
STEM CELLS covers:
Cancer Stem Cells,
Embryonic Stem Cells/Induced Pluripotent Stem (iPS) Cells,
Regenerative Medicine,
Stem Cell Technology: Epigenetics, Genomics, Proteomics, and Metabonomics,
Tissue-Specific Stem Cells,
Translational and Clinical Research.