Selective Effects of Substantia Nigra and Locus Coeruleus Degeneration on Cognition in Parkinson's Disease.

IF 7.4 1区 医学 Q1 CLINICAL NEUROLOGY
Sophie Sun, Victoria Madge, Jelena Djordjevic, Jean-François Gagnon, D Louis Collins, Alain Dagher, Madeleine Sharp
{"title":"Selective Effects of Substantia Nigra and Locus Coeruleus Degeneration on Cognition in Parkinson's Disease.","authors":"Sophie Sun, Victoria Madge, Jelena Djordjevic, Jean-François Gagnon, D Louis Collins, Alain Dagher, Madeleine Sharp","doi":"10.1002/mds.30148","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The substantia nigra (SN) and locus coeruleus (LC) are among the first brain regions to degenerate in Parkinson's disease (PD). This has important implications for early cognitive deficits because these nuclei are sources of ascending neuromodulators (i.e., dopamine and noradrenaline) that support various cognitive functions such as learning, memory, and executive function.</p><p><strong>Objective: </strong>Our aim was to investigate the selective and independent contributions of SN and LC degeneration to cognitive deficits in PD.</p><p><strong>Methods: </strong>We ran a cross-sectional study testing patients with PD and older adults on tasks of positive reinforcement learning, attention/working memory, executive function, and memory to measure cognitive performance in domains thought to be related to dopaminergic and noradrenergic function. Participants also underwent neuromelanin-sensitive magnetic resonance imaging as a measure of degeneration.</p><p><strong>Results: </strong>Reduced SN neuromelanin signal in PD was independently associated with impaired positive reinforcement learning (β = 0.41, 95% confidence interval [CI]: 0.08, 0.74) controlling for changes in the LC. In contrast, reduced LC neuromelanin signal was independently associated with impairments in attention/working memory (β = 0.20, 95% CI [-0.47, -0.10]) and executive function (β = 0.22, 95% CI: -0.57, -0.24), controlling for changes in the SN.</p><p><strong>Conclusions: </strong>These results suggest that SN and LC degeneration may contribute to different cognitive deficits, potentially explaining the heterogeneity that exists in the cognitive manifestations of PD. These results also highlight the potential value of leveraging brain-behavior relationships to develop performance-based measures of cognition that could be used to characterize the phenotypic differences associated with underlying patterns of neurodegeneration. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.</p>","PeriodicalId":213,"journal":{"name":"Movement Disorders","volume":" ","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Movement Disorders","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mds.30148","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The substantia nigra (SN) and locus coeruleus (LC) are among the first brain regions to degenerate in Parkinson's disease (PD). This has important implications for early cognitive deficits because these nuclei are sources of ascending neuromodulators (i.e., dopamine and noradrenaline) that support various cognitive functions such as learning, memory, and executive function.

Objective: Our aim was to investigate the selective and independent contributions of SN and LC degeneration to cognitive deficits in PD.

Methods: We ran a cross-sectional study testing patients with PD and older adults on tasks of positive reinforcement learning, attention/working memory, executive function, and memory to measure cognitive performance in domains thought to be related to dopaminergic and noradrenergic function. Participants also underwent neuromelanin-sensitive magnetic resonance imaging as a measure of degeneration.

Results: Reduced SN neuromelanin signal in PD was independently associated with impaired positive reinforcement learning (β = 0.41, 95% confidence interval [CI]: 0.08, 0.74) controlling for changes in the LC. In contrast, reduced LC neuromelanin signal was independently associated with impairments in attention/working memory (β = 0.20, 95% CI [-0.47, -0.10]) and executive function (β = 0.22, 95% CI: -0.57, -0.24), controlling for changes in the SN.

Conclusions: These results suggest that SN and LC degeneration may contribute to different cognitive deficits, potentially explaining the heterogeneity that exists in the cognitive manifestations of PD. These results also highlight the potential value of leveraging brain-behavior relationships to develop performance-based measures of cognition that could be used to characterize the phenotypic differences associated with underlying patterns of neurodegeneration. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Movement Disorders
Movement Disorders 医学-临床神经学
CiteScore
13.30
自引率
8.10%
发文量
371
审稿时长
12 months
期刊介绍: Movement Disorders publishes a variety of content types including Reviews, Viewpoints, Full Length Articles, Historical Reports, Brief Reports, and Letters. The journal considers original manuscripts on topics related to the diagnosis, therapeutics, pharmacology, biochemistry, physiology, etiology, genetics, and epidemiology of movement disorders. Appropriate topics include Parkinsonism, Chorea, Tremors, Dystonia, Myoclonus, Tics, Tardive Dyskinesia, Spasticity, and Ataxia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信