Nathan S Catlin, Husain I Agha, Adrian E Platts, Manisha Munasinghe, Candice N Hirsch, Emily B Josephs
{"title":"Structural Variants Contribute to Phenotypic Variation in Maize.","authors":"Nathan S Catlin, Husain I Agha, Adrian E Platts, Manisha Munasinghe, Candice N Hirsch, Emily B Josephs","doi":"10.1111/mec.17662","DOIUrl":null,"url":null,"abstract":"<p><p>Comprehensively identifying the loci shaping trait variation has been challenging, in part because standard approaches often miss many types of genetic variants. Structural variants (SVs), especially transposable elements (TEs), are likely to affect phenotypic variation but we lack methods that can detect polymorphic SVs and TEs using short-read sequencing data. Here, we used a whole genome alignment between two maize genotypes to identify polymorphic SVs and then genotyped a large maize diversity panel for these variants using short-read sequencing data. After characterising SV variation in the panel, we identified SV polymorphisms that are associated with life history traits and genotype-by-environment (GxE) interactions. While most of the SVs associated with traits contained TEs, only two of the SVs had boundaries that clearly matched TE breakpoints indicative of a TE insertion, while the other polymorphisms were likely caused by deletions. One of the SVs that appeared to be caused by a TE insertion had the most associations with gene expression compared to other trait-associated SVs. All of the SVs associated with traits were in linkage disequilibrium with nearby single nucleotide polymorphisms (SNPs), suggesting that the approach used here did not identify unique associations that would have been missed in a SNP association study. Overall, we have (1) created a technique to genotype SV polymorphisms across a large diversity panel using support from genomic short-read sequencing alignments and (2) connected this presence/absence SV variation to diverse traits and GxE interactions.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17662"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17662","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Comprehensively identifying the loci shaping trait variation has been challenging, in part because standard approaches often miss many types of genetic variants. Structural variants (SVs), especially transposable elements (TEs), are likely to affect phenotypic variation but we lack methods that can detect polymorphic SVs and TEs using short-read sequencing data. Here, we used a whole genome alignment between two maize genotypes to identify polymorphic SVs and then genotyped a large maize diversity panel for these variants using short-read sequencing data. After characterising SV variation in the panel, we identified SV polymorphisms that are associated with life history traits and genotype-by-environment (GxE) interactions. While most of the SVs associated with traits contained TEs, only two of the SVs had boundaries that clearly matched TE breakpoints indicative of a TE insertion, while the other polymorphisms were likely caused by deletions. One of the SVs that appeared to be caused by a TE insertion had the most associations with gene expression compared to other trait-associated SVs. All of the SVs associated with traits were in linkage disequilibrium with nearby single nucleotide polymorphisms (SNPs), suggesting that the approach used here did not identify unique associations that would have been missed in a SNP association study. Overall, we have (1) created a technique to genotype SV polymorphisms across a large diversity panel using support from genomic short-read sequencing alignments and (2) connected this presence/absence SV variation to diverse traits and GxE interactions.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms