Strategies to Expand the Genetic Code of Mammalian Cells.

IF 51.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chemical Reviews Pub Date : 2025-02-26 Epub Date: 2025-02-12 DOI:10.1021/acs.chemrev.4c00730
Arianna O Osgood, Zeyi Huang, Kaitlyn H Szalay, Abhishek Chatterjee
{"title":"Strategies to Expand the Genetic Code of Mammalian Cells.","authors":"Arianna O Osgood, Zeyi Huang, Kaitlyn H Szalay, Abhishek Chatterjee","doi":"10.1021/acs.chemrev.4c00730","DOIUrl":null,"url":null,"abstract":"<p><p>Genetic code expansion (GCE) in mammalian cells has emerged as a powerful technology for investigating and engineering protein function. This method allows for the precise incorporation of a rapidly growing toolbox of noncanonical amino acids (ncAAs) into predefined sites of target proteins expressed in living cells. Due to the minimal size of these genetically encoded ncAAs, the wide range of functionalities they provide, and the ability to introduce them freely at virtually any site of any protein by simple mutagenesis, this technology holds immense potential for probing the complex biology of mammalian cells and engineering next-generation biotherapeutics. In this review, we provide an overview of the underlying machinery that enables ncAA mutagenesis in mammalian cells and how these are developed. We have also compiled an updated list of ncAAs that have been successfully incorporated into proteins in mammalian cells. Finally, we provide our perspectives on the current challenges that need to be addressed to fully harness the potential of this technology.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":" ","pages":"2474-2501"},"PeriodicalIF":51.4000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.chemrev.4c00730","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Genetic code expansion (GCE) in mammalian cells has emerged as a powerful technology for investigating and engineering protein function. This method allows for the precise incorporation of a rapidly growing toolbox of noncanonical amino acids (ncAAs) into predefined sites of target proteins expressed in living cells. Due to the minimal size of these genetically encoded ncAAs, the wide range of functionalities they provide, and the ability to introduce them freely at virtually any site of any protein by simple mutagenesis, this technology holds immense potential for probing the complex biology of mammalian cells and engineering next-generation biotherapeutics. In this review, we provide an overview of the underlying machinery that enables ncAA mutagenesis in mammalian cells and how these are developed. We have also compiled an updated list of ncAAs that have been successfully incorporated into proteins in mammalian cells. Finally, we provide our perspectives on the current challenges that need to be addressed to fully harness the potential of this technology.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Reviews
Chemical Reviews 化学-化学综合
CiteScore
106.00
自引率
1.10%
发文量
278
审稿时长
4.3 months
期刊介绍: Chemical Reviews is a highly regarded and highest-ranked journal covering the general topic of chemistry. Its mission is to provide comprehensive, authoritative, critical, and readable reviews of important recent research in organic, inorganic, physical, analytical, theoretical, and biological chemistry. Since 1985, Chemical Reviews has also published periodic thematic issues that focus on a single theme or direction of emerging research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信