Comparative Analysis of Mechanical and Thermal Characteristics of 3D-Printed Polyamide using Material Extrusion and Powder Bed Fusion Process with Industrial and Desktop Printers
IF 4.2 3区 材料科学Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Roland Told, Kinga Kardos, Emese Paari-Molnar, Gabor Szabo, Zoltan Ujfalusi, Nitin Sahai, Peter Szabo, Peter Maroti
{"title":"Comparative Analysis of Mechanical and Thermal Characteristics of 3D-Printed Polyamide using Material Extrusion and Powder Bed Fusion Process with Industrial and Desktop Printers","authors":"Roland Told, Kinga Kardos, Emese Paari-Molnar, Gabor Szabo, Zoltan Ujfalusi, Nitin Sahai, Peter Szabo, Peter Maroti","doi":"10.1002/mame.202400293","DOIUrl":null,"url":null,"abstract":"<p>Polyamide (PA) has excellent mechanical properties, making it versatile in various applications, including 3D printing. This paper comprehensively investigates and compares the mechanical, structural, thermal, and geometric properties of 3D-printed PA12 samples produced with desktop and industrial printers using material extrusion (MEX) and powder bed fusion (PBF) processes. The mechanical tests included tensile, flexural, Charpy impact, Shore hardness, torsion, and water absorption tests. Additionally, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and melt volume rate (MVR) measurements are conducted. To verify printing accuracy from a biomedical perspective, 3D-printed prosthetic fingers are subjected to geometric assessments. Industrial PBF samples show significantly higher values for most mechanical properties, including a tensile Young's modulus of 1776 ± 19.42 MPa, while the second highest value is 1419 ± 58.77 MPa (MEX desktop). Furthermore, the MVR of the PBF industrial samples is the highest (18.34 cm<sup>3</sup>/10 min ± 2.32 cm<sup>3</sup>/10 min) and this printer exhibits superior performance in printing accuracy than the other printers. The balanced print quality and mechanics make the PBF industrial printer the most recommended for medical device production, but lower-priced desktop FFF printers can be a good alternative for simple, fast solutions that do not require high precision.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 2","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400293","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Materials and Engineering","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400293","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Polyamide (PA) has excellent mechanical properties, making it versatile in various applications, including 3D printing. This paper comprehensively investigates and compares the mechanical, structural, thermal, and geometric properties of 3D-printed PA12 samples produced with desktop and industrial printers using material extrusion (MEX) and powder bed fusion (PBF) processes. The mechanical tests included tensile, flexural, Charpy impact, Shore hardness, torsion, and water absorption tests. Additionally, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and melt volume rate (MVR) measurements are conducted. To verify printing accuracy from a biomedical perspective, 3D-printed prosthetic fingers are subjected to geometric assessments. Industrial PBF samples show significantly higher values for most mechanical properties, including a tensile Young's modulus of 1776 ± 19.42 MPa, while the second highest value is 1419 ± 58.77 MPa (MEX desktop). Furthermore, the MVR of the PBF industrial samples is the highest (18.34 cm3/10 min ± 2.32 cm3/10 min) and this printer exhibits superior performance in printing accuracy than the other printers. The balanced print quality and mechanics make the PBF industrial printer the most recommended for medical device production, but lower-priced desktop FFF printers can be a good alternative for simple, fast solutions that do not require high precision.
期刊介绍:
Macromolecular Materials and Engineering is the high-quality polymer science journal dedicated to the design, modification, characterization, processing and application of advanced polymeric materials, including membranes, sensors, sustainability, composites, fibers, foams, 3D printing, actuators as well as energy and electronic applications.
Macromolecular Materials and Engineering is among the top journals publishing original research in polymer science.
The journal presents strictly peer-reviewed Research Articles, Reviews, Perspectives and Comments.
ISSN: 1438-7492 (print). 1439-2054 (online).
Readership:Polymer scientists, chemists, physicists, materials scientists, engineers
Abstracting and Indexing Information:
CAS: Chemical Abstracts Service (ACS)
CCR Database (Clarivate Analytics)
Chemical Abstracts Service/SciFinder (ACS)
Chemistry Server Reaction Center (Clarivate Analytics)
ChemWeb (ChemIndustry.com)
Chimica Database (Elsevier)
COMPENDEX (Elsevier)
Current Contents: Physical, Chemical & Earth Sciences (Clarivate Analytics)
Directory of Open Access Journals (DOAJ)
INSPEC (IET)
Journal Citation Reports/Science Edition (Clarivate Analytics)
Materials Science & Engineering Database (ProQuest)
PASCAL Database (INIST/CNRS)
Polymer Library (iSmithers RAPRA)
Reaction Citation Index (Clarivate Analytics)
Science Citation Index (Clarivate Analytics)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
SCOPUS (Elsevier)
Technology Collection (ProQuest)
Web of Science (Clarivate Analytics)