Generative AI for Finance: Applications, Case Studies and Challenges

IF 3 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Expert Systems Pub Date : 2025-02-13 DOI:10.1111/exsy.70018
Siva Sai, Keya Arunakar, Vinay Chamola, Amir Hussain, Pranav Bisht, Sanjeev Kumar
{"title":"Generative AI for Finance: Applications, Case Studies and Challenges","authors":"Siva Sai,&nbsp;Keya Arunakar,&nbsp;Vinay Chamola,&nbsp;Amir Hussain,&nbsp;Pranav Bisht,&nbsp;Sanjeev Kumar","doi":"10.1111/exsy.70018","DOIUrl":null,"url":null,"abstract":"<p>Generative AI (GAI), which has become increasingly popular nowadays, can be considered a brilliant computational machine that can not only assist with simple searching and organising tasks but also possesses the capability to propose new ideas, make decisions on its own and derive better conclusions from complex inputs. Finance comprises various difficult and time-consuming tasks that require significant human effort and are highly prone to errors, such as creating and managing financial documents and reports. Hence, incorporating GAI to simplify processes and make them hassle-free will be consequential. Integrating GAI with finance can open new doors of possibility. With its capacity to enhance decision-making and provide more effective personalised insights, it has the power to optimise financial procedures. In this paper, we address the research gap of the lack of a detailed study exploring the possibilities and advancements of the integration of GAI with finance. We discuss applications that include providing financial consultations to customers, making predictions about the stock market, identifying and addressing fraudulent activities, evaluating risks, and organising unstructured data. We explore real-world examples of GAI, including Finance generative pre-trained transformer (GPT), Bloomberg GPT, and so forth. We look closer at how finance professionals work with AI-integrated systems and tools and how this affects the overall process. We address the challenges presented by comprehensibility, bias, resource demands, and security issues while at the same time emphasising solutions such as GPTs specialised in financial contexts. To the best of our knowledge, this is the first comprehensive paper dealing with GAI for finance.</p>","PeriodicalId":51053,"journal":{"name":"Expert Systems","volume":"42 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/exsy.70018","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/exsy.70018","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Generative AI (GAI), which has become increasingly popular nowadays, can be considered a brilliant computational machine that can not only assist with simple searching and organising tasks but also possesses the capability to propose new ideas, make decisions on its own and derive better conclusions from complex inputs. Finance comprises various difficult and time-consuming tasks that require significant human effort and are highly prone to errors, such as creating and managing financial documents and reports. Hence, incorporating GAI to simplify processes and make them hassle-free will be consequential. Integrating GAI with finance can open new doors of possibility. With its capacity to enhance decision-making and provide more effective personalised insights, it has the power to optimise financial procedures. In this paper, we address the research gap of the lack of a detailed study exploring the possibilities and advancements of the integration of GAI with finance. We discuss applications that include providing financial consultations to customers, making predictions about the stock market, identifying and addressing fraudulent activities, evaluating risks, and organising unstructured data. We explore real-world examples of GAI, including Finance generative pre-trained transformer (GPT), Bloomberg GPT, and so forth. We look closer at how finance professionals work with AI-integrated systems and tools and how this affects the overall process. We address the challenges presented by comprehensibility, bias, resource demands, and security issues while at the same time emphasising solutions such as GPTs specialised in financial contexts. To the best of our knowledge, this is the first comprehensive paper dealing with GAI for finance.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Expert Systems
Expert Systems 工程技术-计算机:理论方法
CiteScore
7.40
自引率
6.10%
发文量
266
审稿时长
24 months
期刊介绍: Expert Systems: The Journal of Knowledge Engineering publishes papers dealing with all aspects of knowledge engineering, including individual methods and techniques in knowledge acquisition and representation, and their application in the construction of systems – including expert systems – based thereon. Detailed scientific evaluation is an essential part of any paper. As well as traditional application areas, such as Software and Requirements Engineering, Human-Computer Interaction, and Artificial Intelligence, we are aiming at the new and growing markets for these technologies, such as Business, Economy, Market Research, and Medical and Health Care. The shift towards this new focus will be marked by a series of special issues covering hot and emergent topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信