Interplay of Gravity Waves and Disturbance Electric Fields to the Abnormal Ionospheric Variations During the 11 May 2024 Superstorm

IF 8.3 Q1 GEOSCIENCES, MULTIDISCIPLINARY
AGU Advances Pub Date : 2025-02-13 DOI:10.1029/2024AV001379
Fuqing Huang, Jiuhou Lei, Xinan Yue, Zhongli Li, Ning Zhang, Yihui Cai, Shun-Rong Zhang, Yihan Wang, Jiahao Zhong, Xiaoli Luan
{"title":"Interplay of Gravity Waves and Disturbance Electric Fields to the Abnormal Ionospheric Variations During the 11 May 2024 Superstorm","authors":"Fuqing Huang,&nbsp;Jiuhou Lei,&nbsp;Xinan Yue,&nbsp;Zhongli Li,&nbsp;Ning Zhang,&nbsp;Yihui Cai,&nbsp;Shun-Rong Zhang,&nbsp;Yihan Wang,&nbsp;Jiahao Zhong,&nbsp;Xiaoli Luan","doi":"10.1029/2024AV001379","DOIUrl":null,"url":null,"abstract":"<p>The strongest geomagnetic storm in the preceding two decades occurred in May 2024. Over these years, ground-based observational capabilities have been significantly enhanced to monitor the ionospheric weather. Notably, the newly established Sanya incoherent scatter radar (SYISR) (Yue, Wan, Ning, &amp; Jin, 2022, https://doi.org/10.1038/s41550-022-01684-1), one of the critical infrastructures of the Chinese “Meridian Project,” provides multiple parameter measurements in the upper atmosphere at low latitudes over Asian longitudies. Unique ionospheric changes on superstorm day 11 May were first recorded by the SYISR experiments and the geostationary satellite (GEO) total electron content (TEC) network over the Asian sector. The electron density or TEC displayed wavelike structures rather than a regular diurnal pattern. Surprisingly, two humps, a common feature in the daytime equatorial ionization anomaly structure, disappeared. The SYISR observations revealed that multiple wind surges accompanied the downward phase propagation caused by atmospheric gravity waves (AGWs) originating from auroral zones. Meanwhile, strong upward and large downward drifts were respectively observed in the daytime and around sunset. The Thermosphere-Ionosphere Electrodynamics Global Circulation Model (TIEGCM) simulations demonstrated that abnormal ionospheric changes were attributed to meridional wind disturbances associated with AGWs and recurrent penetration electric fields corresponding to larger <i>B</i><sub><i>z</i></sub> southward excursions and disturbance dynamo. The complicated interplay between AGWs and disturbance electric fields contributed to this unique ionospheric variation.</p>","PeriodicalId":100067,"journal":{"name":"AGU Advances","volume":"6 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024AV001379","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AGU Advances","FirstCategoryId":"1085","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024AV001379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The strongest geomagnetic storm in the preceding two decades occurred in May 2024. Over these years, ground-based observational capabilities have been significantly enhanced to monitor the ionospheric weather. Notably, the newly established Sanya incoherent scatter radar (SYISR) (Yue, Wan, Ning, & Jin, 2022, https://doi.org/10.1038/s41550-022-01684-1), one of the critical infrastructures of the Chinese “Meridian Project,” provides multiple parameter measurements in the upper atmosphere at low latitudes over Asian longitudies. Unique ionospheric changes on superstorm day 11 May were first recorded by the SYISR experiments and the geostationary satellite (GEO) total electron content (TEC) network over the Asian sector. The electron density or TEC displayed wavelike structures rather than a regular diurnal pattern. Surprisingly, two humps, a common feature in the daytime equatorial ionization anomaly structure, disappeared. The SYISR observations revealed that multiple wind surges accompanied the downward phase propagation caused by atmospheric gravity waves (AGWs) originating from auroral zones. Meanwhile, strong upward and large downward drifts were respectively observed in the daytime and around sunset. The Thermosphere-Ionosphere Electrodynamics Global Circulation Model (TIEGCM) simulations demonstrated that abnormal ionospheric changes were attributed to meridional wind disturbances associated with AGWs and recurrent penetration electric fields corresponding to larger Bz southward excursions and disturbance dynamo. The complicated interplay between AGWs and disturbance electric fields contributed to this unique ionospheric variation.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

2024年5月11日超级风暴期间引力波和扰动电场对电离层异常变化的相互作用
在过去的二十年里,最强的地磁风暴发生在2024年5月。近年来,对电离层天气的地面观测能力显著增强。值得注意的是,新建立的三亚非相干散射雷达(SYISR) (Yue, Wan, Ning, &;Jin, 2022, https://doi.org/10.1038/s41550-022-01684-1)是中国“子午线工程”的关键基础设施之一,提供了亚洲经度低纬度高层大气的多个参数测量。SYISR实验和地球静止卫星(GEO)总电子含量(TEC)网络首次记录了5月11日超级风暴日电离层的独特变化。电子密度(TEC)显示出波浪形结构,而不是规律的日模式。令人惊讶的是,白天赤道电离异常结构中常见的两个驼峰消失了。SYISR观测结果表明,源自极光区的大气重力波(AGWs)引起了多次风浪的下行传播。白天和日落前后分别有较强的上升和较大的下降漂移。热层-电离层电动力学全球环流模式(TIEGCM)模拟表明,电离层异常变化归因于与AGWs相关的经向风扰动和与Bz较大南移和扰动发电机相对应的反复穿透电场。agw和扰动电场之间复杂的相互作用促成了这种独特的电离层变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信