Adaptive learning anomaly detection and classification model for cyber and physical threats in industrial control systems

IF 1.7 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Gabriela Ahmadi-Assalemi, Haider Al-Khateeb, Vladlena Benson, Bogdan Adamyk, Meryem Ammi
{"title":"Adaptive learning anomaly detection and classification model for cyber and physical threats in industrial control systems","authors":"Gabriela Ahmadi-Assalemi,&nbsp;Haider Al-Khateeb,&nbsp;Vladlena Benson,&nbsp;Bogdan Adamyk,&nbsp;Meryem Ammi","doi":"10.1049/cps2.70004","DOIUrl":null,"url":null,"abstract":"<p>A surge of digital technologies adopted into Industrial Control Systems (ICS) exposes critical infrastructures to increasingly hostile and well-organised cybercrime. The increased need for flexibility and convenient administration expands the attack surface. Likewise, an insider with authorised access reveals a difficult-to-detect attack vector. Because of the range of critical services that ICS provide, disruptions to operations could have devastating consequences making ICS an attractive target for sophisticated threat actors. Hence, the authors introduce a novel anomalous behaviour detection model for ICS data streams from physical plant sensors. A model for one-class classification is developed, using stream rebalancing followed by adaptive machine learning algorithms coupled with drift detection methods to detect anomalies from physical plant sensor data. The authors’ approach is shown on ICS datasets. Additionally, a use case illustrates the model's applicability to post-incident investigations as part of a defence-in-depth capability in ICS. The experimental results show that the proposed model achieves an overall Matthews Correlation Coefficient score of 0.999 and Cohen's Kappa score of 0.9986 on limited variable single-type anomalous behaviour per data stream. The results on wide data streams achieve an MCC score of 0.981 and a K score of 0.9808 in the prevalence of multiple types of anomalous instances.</p>","PeriodicalId":36881,"journal":{"name":"IET Cyber-Physical Systems: Theory and Applications","volume":"10 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cps2.70004","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Cyber-Physical Systems: Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cps2.70004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

A surge of digital technologies adopted into Industrial Control Systems (ICS) exposes critical infrastructures to increasingly hostile and well-organised cybercrime. The increased need for flexibility and convenient administration expands the attack surface. Likewise, an insider with authorised access reveals a difficult-to-detect attack vector. Because of the range of critical services that ICS provide, disruptions to operations could have devastating consequences making ICS an attractive target for sophisticated threat actors. Hence, the authors introduce a novel anomalous behaviour detection model for ICS data streams from physical plant sensors. A model for one-class classification is developed, using stream rebalancing followed by adaptive machine learning algorithms coupled with drift detection methods to detect anomalies from physical plant sensor data. The authors’ approach is shown on ICS datasets. Additionally, a use case illustrates the model's applicability to post-incident investigations as part of a defence-in-depth capability in ICS. The experimental results show that the proposed model achieves an overall Matthews Correlation Coefficient score of 0.999 and Cohen's Kappa score of 0.9986 on limited variable single-type anomalous behaviour per data stream. The results on wide data streams achieve an MCC score of 0.981 and a K score of 0.9808 in the prevalence of multiple types of anomalous instances.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Cyber-Physical Systems: Theory and Applications
IET Cyber-Physical Systems: Theory and Applications Computer Science-Computer Networks and Communications
CiteScore
5.40
自引率
6.70%
发文量
17
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信