Integrating the Interconnections Between Groundwater and Land Surface Processes Through the Coupled NASA Land Information System and ParFlow Environment
IF 4.4 2区 地球科学Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Fadji Z. Maina, Dan Rosen, Peyman Abbaszadeh, Chen Yang, Sujay V. Kumar, Matthew Rodell, Reed Maxwell
{"title":"Integrating the Interconnections Between Groundwater and Land Surface Processes Through the Coupled NASA Land Information System and ParFlow Environment","authors":"Fadji Z. Maina, Dan Rosen, Peyman Abbaszadeh, Chen Yang, Sujay V. Kumar, Matthew Rodell, Reed Maxwell","doi":"10.1029/2024MS004415","DOIUrl":null,"url":null,"abstract":"<p>Understanding the interactions between the atmosphere, the land, and the subsurface is fundamental to hydrology and is critical for a better assessment of the impacts of climate change and human management on hydrological systems. However, many land surface models simplify the subsurface hydrology and thereby these interactions. In this study, we couple the land surface model Noah-MP included in the NASA Land Information System (LIS) with the integrated hydrologic model ParFlow (ParFlow-LIS) using the Earth System Modeling Framework (ESMF) and the National United Operational Prediction Capability (NUOPC). This coupling improves the simulation of water and energy cycle processes by adding the three-dimensional variably saturated and heterogeneous flow in the subsurface using sophisticated and nonlinear physics-based equations as well as the advances in satellite remote sensing-based data assimilation of the land surface, thereby benefiting the integrated hydrologic modeling and data assimilation community. We use the High Plains aquifer, located in the central United States, as a testbed to evaluate the coupled ParFlow-LIS system. The new ParFlow-LIS system accounts for the effects of topographically driven flows on the land surface, producing more fine-scale patterns of land surface states and fluxes than standalone LIS. In addition, ParFlow-LIS enables the consideration of the effect of subsurface water storage on evapotranspiration. This is particularly important in areas and times with dry soils, such as during drought conditions or in the presence of a cone of depression due to pumping.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"17 2","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004415","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004415","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the interactions between the atmosphere, the land, and the subsurface is fundamental to hydrology and is critical for a better assessment of the impacts of climate change and human management on hydrological systems. However, many land surface models simplify the subsurface hydrology and thereby these interactions. In this study, we couple the land surface model Noah-MP included in the NASA Land Information System (LIS) with the integrated hydrologic model ParFlow (ParFlow-LIS) using the Earth System Modeling Framework (ESMF) and the National United Operational Prediction Capability (NUOPC). This coupling improves the simulation of water and energy cycle processes by adding the three-dimensional variably saturated and heterogeneous flow in the subsurface using sophisticated and nonlinear physics-based equations as well as the advances in satellite remote sensing-based data assimilation of the land surface, thereby benefiting the integrated hydrologic modeling and data assimilation community. We use the High Plains aquifer, located in the central United States, as a testbed to evaluate the coupled ParFlow-LIS system. The new ParFlow-LIS system accounts for the effects of topographically driven flows on the land surface, producing more fine-scale patterns of land surface states and fluxes than standalone LIS. In addition, ParFlow-LIS enables the consideration of the effect of subsurface water storage on evapotranspiration. This is particularly important in areas and times with dry soils, such as during drought conditions or in the presence of a cone of depression due to pumping.
期刊介绍:
The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community.
Open access. Articles are available free of charge for everyone with Internet access to view and download.
Formal peer review.
Supplemental material, such as code samples, images, and visualizations, is published at no additional charge.
No additional charge for color figures.
Modest page charges to cover production costs.
Articles published in high-quality full text PDF, HTML, and XML.
Internal and external reference linking, DOI registration, and forward linking via CrossRef.