How Microstructures, Oxide Layers, and Charge Transfer Reactions Influence Double Layer Capacitances. Part 2: Equivalent Circuit Models

IF 2.9 Q2 ELECTROCHEMISTRY
Maximilian Schalenbach, Luc Raijmakers, Hermann Tempel, Rüdiger-A. Eichel
{"title":"How Microstructures, Oxide Layers, and Charge Transfer Reactions Influence Double Layer Capacitances. Part 2: Equivalent Circuit Models","authors":"Maximilian Schalenbach,&nbsp;Luc Raijmakers,&nbsp;Hermann Tempel,&nbsp;Rüdiger-A. Eichel","doi":"10.1002/elsa.202400010","DOIUrl":null,"url":null,"abstract":"<p>In the first part of this study, double layer (DL) capacitances of plane and porous electrodes were related to electrochemical active surface areas based on electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) measurements. Here, these measured data are described with equivalent circuit models (ECMs), aiming to critically assess the ambiguity, reliability, and pitfalls of the parametrization of physicochemical mechanisms. For microstructures and porous electrodes, the resistive–capacitive contributions of DL in combination with resistively damped currents in pores are discussed to require the complexity of convoluted transmission line ECMs. With these ECMs, the frequency-dependencies of the capacitances of porous electrodes are elucidated. Detailed EIS or CV data-based reconstructions of complex microstructures are discussed as impossible due to the blending of individual structural features and the related loss of information. Microstructures in combination with charge transfer reactions and weakly conducting parts require parameter-rich ECMs for an accurate physicochemical description of all physicochemical mechanisms contributing to the response. Nevertheless, the data of such a complex electrode in the form of an oxidized titanium electrode are fitted by an oversimplistic ECM, showing how easily unphysical parameterizations can be obtained with ECM-based impedance analysis. In summary, trends in how microstructures, charge transfer resistances and oxide layers can influence EIS and CV data are shown, while awareness for the overinterpretation of ECM-analysis is raised.</p>","PeriodicalId":93746,"journal":{"name":"Electrochemical science advances","volume":"5 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsa.202400010","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemical science advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elsa.202400010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

In the first part of this study, double layer (DL) capacitances of plane and porous electrodes were related to electrochemical active surface areas based on electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) measurements. Here, these measured data are described with equivalent circuit models (ECMs), aiming to critically assess the ambiguity, reliability, and pitfalls of the parametrization of physicochemical mechanisms. For microstructures and porous electrodes, the resistive–capacitive contributions of DL in combination with resistively damped currents in pores are discussed to require the complexity of convoluted transmission line ECMs. With these ECMs, the frequency-dependencies of the capacitances of porous electrodes are elucidated. Detailed EIS or CV data-based reconstructions of complex microstructures are discussed as impossible due to the blending of individual structural features and the related loss of information. Microstructures in combination with charge transfer reactions and weakly conducting parts require parameter-rich ECMs for an accurate physicochemical description of all physicochemical mechanisms contributing to the response. Nevertheless, the data of such a complex electrode in the form of an oxidized titanium electrode are fitted by an oversimplistic ECM, showing how easily unphysical parameterizations can be obtained with ECM-based impedance analysis. In summary, trends in how microstructures, charge transfer resistances and oxide layers can influence EIS and CV data are shown, while awareness for the overinterpretation of ECM-analysis is raised.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信