Deciphering Landslide Precursors From Spatiotemporal Ground Motion Using Persistent Homology

IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Jiangzhou Mei, Gang Ma, Chengqian Guo, Ting Wu, Jidong Zhao, Wei Zhou
{"title":"Deciphering Landslide Precursors From Spatiotemporal Ground Motion Using Persistent Homology","authors":"Jiangzhou Mei,&nbsp;Gang Ma,&nbsp;Chengqian Guo,&nbsp;Ting Wu,&nbsp;Jidong Zhao,&nbsp;Wei Zhou","doi":"10.1029/2024JF007949","DOIUrl":null,"url":null,"abstract":"<p>Landslides are major natural disasters that pose significant challenges for prediction. Recent advances in monitoring tools have led to the accumulation of monitoring data with high spatiotemporal resolution, calling for new and robust methodologies to efficiently analyze these complex big data and accurately predict landslides. Here, we present a persistent homology-based method that integrates the slope-scale monitoring data from interferometric synthetic aperture radar with novel measures of spatiotemporal evolution of slope deformation to identify early warning precursors for impending landslides. Our proposed method can capture critical patterns of accelerated deformation evolution and generate warning signals long before the landslide occurrence. Six case studies confirm the effectiveness and accuracy of the proposed method in landslide prediction, with a leading time exceeding 100 days for the Xinmo and Mud Creek landslides. Strong spatiotemporal correlations of slope deformation underscore long-range effective predictions. Our method offers a new, robust alternative to the conventional threshold-based approach for understanding and predicting landslides in natural slopes.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"130 2","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Earth Surface","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JF007949","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Landslides are major natural disasters that pose significant challenges for prediction. Recent advances in monitoring tools have led to the accumulation of monitoring data with high spatiotemporal resolution, calling for new and robust methodologies to efficiently analyze these complex big data and accurately predict landslides. Here, we present a persistent homology-based method that integrates the slope-scale monitoring data from interferometric synthetic aperture radar with novel measures of spatiotemporal evolution of slope deformation to identify early warning precursors for impending landslides. Our proposed method can capture critical patterns of accelerated deformation evolution and generate warning signals long before the landslide occurrence. Six case studies confirm the effectiveness and accuracy of the proposed method in landslide prediction, with a leading time exceeding 100 days for the Xinmo and Mud Creek landslides. Strong spatiotemporal correlations of slope deformation underscore long-range effective predictions. Our method offers a new, robust alternative to the conventional threshold-based approach for understanding and predicting landslides in natural slopes.

利用持续同源性从时空地面运动中破译滑坡前兆
山体滑坡是重大自然灾害,对预测构成重大挑战。监测工具的最新进展导致了高时空分辨率监测数据的积累,需要新的和强大的方法来有效分析这些复杂的大数据并准确预测滑坡。在这里,我们提出了一种基于持续同源性的方法,该方法将干涉合成孔径雷达的斜坡尺度监测数据与斜坡变形时空演变的新测量相结合,以识别即将发生的滑坡的预警前兆。我们提出的方法可以捕捉到加速变形演化的关键模式,并在滑坡发生前产生预警信号。6个实例验证了该方法在滑坡预测中的有效性和准确性,对新磨和泥溪滑坡的预测提前期均超过100天。边坡变形的强时空相关性强调了长期有效的预测。我们的方法为理解和预测自然斜坡中的滑坡提供了一种新的、健壮的替代方法,以传统的基于阈值的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Earth Surface
Journal of Geophysical Research: Earth Surface Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
6.30
自引率
10.30%
发文量
162
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信