Overexpression of Acetylation-Defective Heat Shock Protein 60 Inhibits the Proliferation of Nucleopolyhedrovirus in Bombyx mori

IF 1.5 4区 农林科学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yao Li, Jiannan Wu, Yi You, Meng Miao, Wei Yu
{"title":"Overexpression of Acetylation-Defective Heat Shock Protein 60 Inhibits the Proliferation of Nucleopolyhedrovirus in Bombyx mori","authors":"Yao Li,&nbsp;Jiannan Wu,&nbsp;Yi You,&nbsp;Meng Miao,&nbsp;Wei Yu","doi":"10.1002/arch.70038","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Heat shock protein 60 (Hsp60), abundantly presents in mitochondria, is a highly conserved chaperone that maintains the stability and functionality of mitochondrial proteins, while also participating in the regulation of various cellular processes. As a member of the heat shock family, Hsp60 significantly influences viral proliferation. However, limited research is available on its role in the proliferation of entomopathogenic baculoviruses, particularly <i>Bombyx mori</i> nucleopolyhedrovirus (BmNPV). Our previous proteomics results showed a significant decrease of Hsp60 acetylation levels after BmNPV infection. To investigate the impact of Hsp60 deacetylation on viral proliferation, site-direct mutagenesis was performed to generate a deacetylated (K/R) mimic of Hsp60. We found that the acetylation level of lysine 362 (K362) decreased after BmNPV challenge. Furthermore, overexpression of deacetylation-mimicking Hsp60 reduced the chaperone activity of Hsp60, leading to impaired mitochondrial function, including increased reactive oxygen species (ROS) levels, decreased mitochondrial membrane potential, and reduced substrate protein Manganese-containing superoxide dismutase (Mn-SOD) activities, ultimately leading to inhibition of viral proliferation. This study establishes lysine 362 acetylation of Hsp60 as a model for Posttranslational modifications induced by host-virus interactions, providing new insights into potential antiviral strategies.</p></div>","PeriodicalId":8281,"journal":{"name":"Archives of Insect Biochemistry and Physiology","volume":"118 2","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Insect Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/arch.70038","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Heat shock protein 60 (Hsp60), abundantly presents in mitochondria, is a highly conserved chaperone that maintains the stability and functionality of mitochondrial proteins, while also participating in the regulation of various cellular processes. As a member of the heat shock family, Hsp60 significantly influences viral proliferation. However, limited research is available on its role in the proliferation of entomopathogenic baculoviruses, particularly Bombyx mori nucleopolyhedrovirus (BmNPV). Our previous proteomics results showed a significant decrease of Hsp60 acetylation levels after BmNPV infection. To investigate the impact of Hsp60 deacetylation on viral proliferation, site-direct mutagenesis was performed to generate a deacetylated (K/R) mimic of Hsp60. We found that the acetylation level of lysine 362 (K362) decreased after BmNPV challenge. Furthermore, overexpression of deacetylation-mimicking Hsp60 reduced the chaperone activity of Hsp60, leading to impaired mitochondrial function, including increased reactive oxygen species (ROS) levels, decreased mitochondrial membrane potential, and reduced substrate protein Manganese-containing superoxide dismutase (Mn-SOD) activities, ultimately leading to inhibition of viral proliferation. This study establishes lysine 362 acetylation of Hsp60 as a model for Posttranslational modifications induced by host-virus interactions, providing new insights into potential antiviral strategies.

Abstract Image

过表达乙酰化缺陷热休克蛋白60抑制家蚕核多角体病毒的增殖
热休克蛋白60 (Hsp60)是一种高度保守的伴侣蛋白,大量存在于线粒体中,维持线粒体蛋白的稳定性和功能,同时也参与各种细胞过程的调节。作为热休克家族的一员,Hsp60对病毒增殖有显著影响。然而,关于其在昆虫病原杆状病毒,特别是家蚕核多角体病毒(BmNPV)增殖中的作用的研究有限。我们之前的蛋白质组学结果显示,感染BmNPV后,Hsp60乙酰化水平显著降低。为了研究Hsp60去乙酰化对病毒增殖的影响,研究人员进行了位点直接诱变,产生了Hsp60的去乙酰化(K/R)模拟物。我们发现,在BmNPV攻击后,赖氨酸362 (K362)乙酰化水平降低。此外,过度表达模拟去乙酰化的Hsp60降低了Hsp60的伴侣活性,导致线粒体功能受损,包括活性氧(ROS)水平升高,线粒体膜电位降低,底物蛋白含锰超氧化物歧化酶(Mn-SOD)活性降低,最终导致病毒增殖受到抑制。本研究建立了Hsp60的赖氨酸362乙酰化作为宿主-病毒相互作用诱导的翻译后修饰的模型,为潜在的抗病毒策略提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
4.50%
发文量
115
审稿时长
12 months
期刊介绍: Archives of Insect Biochemistry and Physiology is an international journal that publishes articles in English that are of interest to insect biochemists and physiologists. Generally these articles will be in, or related to, one of the following subject areas: Behavior, Bioinformatics, Carbohydrates, Cell Line Development, Cell Signalling, Development, Drug Discovery, Endocrinology, Enzymes, Lipids, Molecular Biology, Neurobiology, Nucleic Acids, Nutrition, Peptides, Pharmacology, Pollinators, Proteins, Toxicology. Archives will publish only original articles. Articles that are confirmatory in nature or deal with analytical methods previously described will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信