{"title":"Effect of Shell Thickness on the Catalytic Performance of Co@SiO2 Core-Shell Catalysts for Fischer–Tropsch Synthesis","authors":"Xin Wang, Tao Chen, Zhenhua Li","doi":"10.1002/aoc.70068","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Fischer–Tropsch synthesis (FTS) is an essential strategy for mitigating the energy crisis, combating climate change, and promoting sustainable development. Supported cobalt-based catalysts exhibit significant activity in FTS, but their product selectivity requires further optimization. In this paper, Co@SiO<sub>2</sub> catalysts with core-shell structure were prepared by hydrothermal synthesis. The effect of the SiO<sub>2</sub> shell thickness on the catalytic performance of FTS was explored by varying the amount of ethyl orthosilicate (TEOS) added with stabilizer polyvinylpyrrolidone (PVP). Among them, the catalyst CS3 achieved the greatest number of cobalt active sites, the highest CO conversion (77.2%), and C<sub>5+</sub> selectivity (84.3%) with a high C<sub>5</sub>-C<sub>11</sub> proportion in the C<sub>5+</sub> product. Characterizations of the catalysts were performed to examine their morphology and physicochemical properties. It was observed that the dispersion of cobalt species improved with increasing shell thickness within a certain range, promoting the reduction of cobalt species. However, the formation of Si-OH groups because of the hydrolysis of excess TEOS clogged catalyst pores, consequently diminishing the catalytic activity in FTS. Compared with the CS3-PVP0 catalyst without stabilizer PVP added, the catalyst CS3 with PVP added exhibited obvious ordered morphology, making CO conversion significantly enhanced. This is attributed to the role of inert carbon in PVP, which not only boosts the reducibility of cobalt species but also enhances the surface hydrophobicity of the mesoporous SiO<sub>2</sub> material.</p>\n </div>","PeriodicalId":8344,"journal":{"name":"Applied Organometallic Chemistry","volume":"39 3","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Organometallic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aoc.70068","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Fischer–Tropsch synthesis (FTS) is an essential strategy for mitigating the energy crisis, combating climate change, and promoting sustainable development. Supported cobalt-based catalysts exhibit significant activity in FTS, but their product selectivity requires further optimization. In this paper, Co@SiO2 catalysts with core-shell structure were prepared by hydrothermal synthesis. The effect of the SiO2 shell thickness on the catalytic performance of FTS was explored by varying the amount of ethyl orthosilicate (TEOS) added with stabilizer polyvinylpyrrolidone (PVP). Among them, the catalyst CS3 achieved the greatest number of cobalt active sites, the highest CO conversion (77.2%), and C5+ selectivity (84.3%) with a high C5-C11 proportion in the C5+ product. Characterizations of the catalysts were performed to examine their morphology and physicochemical properties. It was observed that the dispersion of cobalt species improved with increasing shell thickness within a certain range, promoting the reduction of cobalt species. However, the formation of Si-OH groups because of the hydrolysis of excess TEOS clogged catalyst pores, consequently diminishing the catalytic activity in FTS. Compared with the CS3-PVP0 catalyst without stabilizer PVP added, the catalyst CS3 with PVP added exhibited obvious ordered morphology, making CO conversion significantly enhanced. This is attributed to the role of inert carbon in PVP, which not only boosts the reducibility of cobalt species but also enhances the surface hydrophobicity of the mesoporous SiO2 material.
期刊介绍:
All new compounds should be satisfactorily identified and proof of their structure given according to generally accepted standards. Structural reports, such as papers exclusively dealing with synthesis and characterization, analytical techniques, or X-ray diffraction studies of metal-organic or organometallic compounds will not be considered. The editors reserve the right to refuse without peer review any manuscript that does not comply with the aims and scope of the journal. Applied Organometallic Chemistry publishes Full Papers, Reviews, Mini Reviews and Communications of scientific research in all areas of organometallic and metal-organic chemistry involving main group metals, transition metals, lanthanides and actinides. All contributions should contain an explicit application of novel compounds, for instance in materials science, nano science, catalysis, chemical vapour deposition, metal-mediated organic synthesis, polymers, bio-organometallics, metallo-therapy, metallo-diagnostics and medicine. Reviews of books covering aspects of the fields of focus are also published.