Stimuli-Responsive Polyurethane Actuator Triggered by Light and Heat Reinforced With Disulfide Bonds

IF 2.7 3区 化学 Q2 POLYMER SCIENCE
Zhi-Hui Ren, Zhishuai Cui, Naqi Li, Xiaolei Yue, Yujie Zhang, Peng Li, Wen Zeng, Zheng-Hui Guan
{"title":"Stimuli-Responsive Polyurethane Actuator Triggered by Light and Heat Reinforced With Disulfide Bonds","authors":"Zhi-Hui Ren,&nbsp;Zhishuai Cui,&nbsp;Naqi Li,&nbsp;Xiaolei Yue,&nbsp;Yujie Zhang,&nbsp;Peng Li,&nbsp;Wen Zeng,&nbsp;Zheng-Hui Guan","doi":"10.1002/app.56629","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The photoisomerization behavior of mesogenic azobenzene makes it possible to convert light energy into mechanical action. However, achieving durability, configurability, and flexibility of light-responsive actuators for artificial intelligence applications remains challenging. Here, a light responsive polyurethane (AzoPU-SS) with remarkable anti-fatigue and anti-stress properties has been synthesized through the combination of dynamic disulfide bonds and mesogenic azobenzene functional groups. The AzoPU-SS film demonstrated excellent photo-induced bending, under ultraviolet (UV) light exposure, indicating effective transfer of molecular deformation from the microscopic to the macroscopic level. Moreover, the AzoPU-SS material's elongation at break was greatly increased, due to the dynamic and reversible nature of the flexible S-S and H bonds, enabling the coordinated motion of azobenzene groups and producing significant deformation. Such a reinforced strategy could be used to design smart actuators with superior stretchability and toughness, helping to broaden the applications of light-responsive actuator materials.</p>\n </div>","PeriodicalId":183,"journal":{"name":"Journal of Applied Polymer Science","volume":"142 12","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/app.56629","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The photoisomerization behavior of mesogenic azobenzene makes it possible to convert light energy into mechanical action. However, achieving durability, configurability, and flexibility of light-responsive actuators for artificial intelligence applications remains challenging. Here, a light responsive polyurethane (AzoPU-SS) with remarkable anti-fatigue and anti-stress properties has been synthesized through the combination of dynamic disulfide bonds and mesogenic azobenzene functional groups. The AzoPU-SS film demonstrated excellent photo-induced bending, under ultraviolet (UV) light exposure, indicating effective transfer of molecular deformation from the microscopic to the macroscopic level. Moreover, the AzoPU-SS material's elongation at break was greatly increased, due to the dynamic and reversible nature of the flexible S-S and H bonds, enabling the coordinated motion of azobenzene groups and producing significant deformation. Such a reinforced strategy could be used to design smart actuators with superior stretchability and toughness, helping to broaden the applications of light-responsive actuator materials.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Polymer Science
Journal of Applied Polymer Science 化学-高分子科学
CiteScore
5.70
自引率
10.00%
发文量
1280
审稿时长
2.7 months
期刊介绍: The Journal of Applied Polymer Science is the largest peer-reviewed publication in polymers, #3 by total citations, and features results with real-world impact on membranes, polysaccharides, and much more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信