Analyses of Features of Magnetic Cycles at Different Amounts of Dynamo Supercriticality: Solar Dynamo Is About Two Times Critical

IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Sanket Wavhal, Pawan Kumar, Bidya Binay Karak
{"title":"Analyses of Features of Magnetic Cycles at Different Amounts of Dynamo Supercriticality: Solar Dynamo Is About Two Times Critical","authors":"Sanket Wavhal,&nbsp;Pawan Kumar,&nbsp;Bidya Binay Karak","doi":"10.1007/s11207-025-02428-w","DOIUrl":null,"url":null,"abstract":"<div><p>The growth of a large-scale magnetic field in the Sun and stars is usually possible when the dynamo number <span>\\((D)\\)</span> is above a critical value <span>\\(D_{c}\\)</span>. As the star ages, its rotation rate and thus <span>\\(D\\)</span> decrease. Hence, the question is how far the solar dynamo is from the critical dynamo transition. To answer this question, we have performed a set of simulations using Babcock–Leighton type dynamo models at different values of dynamo supercriticality and analyzed various features of magnetic cycle. By comparing the recovery rates of the dynamo from the Maunder minimum and statistics (numbers and durations) of the grand minima and maxima with that of observations and we show that the solar dynamo is only about two times critical and thus not highly supercritical. The observed correlation between the polar field proxy and the following cycle amplitudes and Gnevyshev–Ohl rule are also compatible with this conclusion.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"300 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11207-025-02428-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The growth of a large-scale magnetic field in the Sun and stars is usually possible when the dynamo number \((D)\) is above a critical value \(D_{c}\). As the star ages, its rotation rate and thus \(D\) decrease. Hence, the question is how far the solar dynamo is from the critical dynamo transition. To answer this question, we have performed a set of simulations using Babcock–Leighton type dynamo models at different values of dynamo supercriticality and analyzed various features of magnetic cycle. By comparing the recovery rates of the dynamo from the Maunder minimum and statistics (numbers and durations) of the grand minima and maxima with that of observations and we show that the solar dynamo is only about two times critical and thus not highly supercritical. The observed correlation between the polar field proxy and the following cycle amplitudes and Gnevyshev–Ohl rule are also compatible with this conclusion.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Physics
Solar Physics 地学天文-天文与天体物理
CiteScore
5.10
自引率
17.90%
发文量
146
审稿时长
1 months
期刊介绍: Solar Physics was founded in 1967 and is the principal journal for the publication of the results of fundamental research on the Sun. The journal treats all aspects of solar physics, ranging from the internal structure of the Sun and its evolution to the outer corona and solar wind in interplanetary space. Papers on solar-terrestrial physics and on stellar research are also published when their results have a direct bearing on our understanding of the Sun.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信