Superresolution based on coherent thermal radiation with selective information

IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Duan-Hsin Huang, Chih-Wei Chang
{"title":"Superresolution based on coherent thermal radiation with selective information","authors":"Duan-Hsin Huang,&nbsp;Chih-Wei Chang","doi":"10.1186/s11671-025-04209-7","DOIUrl":null,"url":null,"abstract":"<div><p>We reexamine superresolution methods that may have been overlooked by previous optical microscopy techniques. For a one-dimensional (1D) system, we show that maximizing the information capacity of an imaging system is not a necessary condition for surpassing the Abbe diffraction limit. Specifically, the spatial resolution of two coherent emitters can go beyond the Abbe diffraction limit if an appropriate information zone, but not the full information zone, is selected for far-field imaging. Based on this principle, we show that <i>λ</i>/2.6 superresolution can be easily achieved for two coherent thermal radiative sources with a sufficiently large phase difference. Similar effects can be found for a 1D array of thermal radiative sources coupled by surface phonon polaritons. Introducing a dielectric microsphere into the system can further enhance the phase difference among the radiative sources, achieving superresolution better than <i>λ</i>/4. The concept and method presented here can be implemented to enhance the spatial resolution of thermal imaging.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04209-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-025-04209-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We reexamine superresolution methods that may have been overlooked by previous optical microscopy techniques. For a one-dimensional (1D) system, we show that maximizing the information capacity of an imaging system is not a necessary condition for surpassing the Abbe diffraction limit. Specifically, the spatial resolution of two coherent emitters can go beyond the Abbe diffraction limit if an appropriate information zone, but not the full information zone, is selected for far-field imaging. Based on this principle, we show that λ/2.6 superresolution can be easily achieved for two coherent thermal radiative sources with a sufficiently large phase difference. Similar effects can be found for a 1D array of thermal radiative sources coupled by surface phonon polaritons. Introducing a dielectric microsphere into the system can further enhance the phase difference among the radiative sources, achieving superresolution better than λ/4. The concept and method presented here can be implemented to enhance the spatial resolution of thermal imaging.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters 工程技术-材料科学:综合
CiteScore
11.30
自引率
0.00%
发文量
110
审稿时长
48 days
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信