Laser welding on 10 mm thick grade 92 steel for USC applications: microstructure and mechanical properties

IF 4.4 3区 工程技术 Q1 ENGINEERING, CIVIL
Dudekula Moulali, Amit Kumar, Krishna Guguloth, Sachin Sirohi, Chandra Shakher Tyagi, H. Natu, Chandan Pandey
{"title":"Laser welding on 10 mm thick grade 92 steel for USC applications: microstructure and mechanical properties","authors":"Dudekula Moulali,&nbsp;Amit Kumar,&nbsp;Krishna Guguloth,&nbsp;Sachin Sirohi,&nbsp;Chandra Shakher Tyagi,&nbsp;H. Natu,&nbsp;Chandan Pandey","doi":"10.1007/s43452-025-01144-3","DOIUrl":null,"url":null,"abstract":"<div><p>High-power lasers have been shown to be more effective for welding plates with thicknesses of 10 mm or greater. In the present research, a heat-resistant P92 steel plate was welded using the laser beam welding process. The laser-welded joint underwent mechanical testing and metallographic characterization in both the as-welded condition and after post-weld heat treatment (760 °C for 2 h). The macrostructure analysis revealed that the welded joint had full penetration with negligible internal defects. The widths of the heat-affected zone (HAZ), the weld metal at the top, and the weld metal in the root region were 1.77 mm, 3.83 mm, and 3.12 mm, respectively. Inhomogeneity in both the microstructure and microhardness was observed along the welded joint. The coarse-grained structure with negligible precipitates in the coarse-grained HAZ resulted in a maximum hardness of 432 HV, while a minimum hardness of 225 HV was measured in the inter-critical HAZ, likely due to the formation of a complex microstructure. Another important observation in the fine-grained HAZ and inter-critical HAZ was the presence of two types of grain boundaries: one decorated with a high density of precipitates and the other free from precipitates. This contributed significantly to the heterogeneity in the microstructure. The weld metal exhibited a lath-elongated martensitic microstructure, which showed significant hardness variation due to the presence of soft ferrite patches. The hardness of the untempered martensite in the weld metal ranged from 385 to 403 HV, with an average of 398 ± 7 HV. In contrast, the hardness of the soft ferrite patches was measured in the same range of 234–349 HV. The ultimate tensile strength and percentage elongation were 1014 ± 11 MPa and 27 ± 3%, respectively, which are significantly close to those of the P92 base metal, as fracture occurred in the P92 base metal. The Charpy toughness measured higher than the recommended value of 47 Joules, confirming the suitability of the welded joint for USC boiler applications. The PWHT significantly reduced the inhomogeneity in microstructure and mechanical properties, though some variation remained. There was a notable decrease in hardness for the weld metal, coarse-grained HAZ, and fine-grained HAZ after PWHT, while the hardness of the delta ferrite patches and inter-critical HAZ remained relatively unaffected, leading to continued microstructural heterogeneity. The tempering of martensite due to PWHT resulted in a drop in ultimate tensile strength and an increase in percentage elongation, with failure still occurring in the P92 base metal in the PWHT condition. Additionally, Charpy toughness increased significantly after PWHT, confirming the applicability of the PWHT for welded joints of P92 steel before final application. A good correlation between microstructure and mechanical properties was established based on these findings.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":"25 2","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Civil and Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s43452-025-01144-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

High-power lasers have been shown to be more effective for welding plates with thicknesses of 10 mm or greater. In the present research, a heat-resistant P92 steel plate was welded using the laser beam welding process. The laser-welded joint underwent mechanical testing and metallographic characterization in both the as-welded condition and after post-weld heat treatment (760 °C for 2 h). The macrostructure analysis revealed that the welded joint had full penetration with negligible internal defects. The widths of the heat-affected zone (HAZ), the weld metal at the top, and the weld metal in the root region were 1.77 mm, 3.83 mm, and 3.12 mm, respectively. Inhomogeneity in both the microstructure and microhardness was observed along the welded joint. The coarse-grained structure with negligible precipitates in the coarse-grained HAZ resulted in a maximum hardness of 432 HV, while a minimum hardness of 225 HV was measured in the inter-critical HAZ, likely due to the formation of a complex microstructure. Another important observation in the fine-grained HAZ and inter-critical HAZ was the presence of two types of grain boundaries: one decorated with a high density of precipitates and the other free from precipitates. This contributed significantly to the heterogeneity in the microstructure. The weld metal exhibited a lath-elongated martensitic microstructure, which showed significant hardness variation due to the presence of soft ferrite patches. The hardness of the untempered martensite in the weld metal ranged from 385 to 403 HV, with an average of 398 ± 7 HV. In contrast, the hardness of the soft ferrite patches was measured in the same range of 234–349 HV. The ultimate tensile strength and percentage elongation were 1014 ± 11 MPa and 27 ± 3%, respectively, which are significantly close to those of the P92 base metal, as fracture occurred in the P92 base metal. The Charpy toughness measured higher than the recommended value of 47 Joules, confirming the suitability of the welded joint for USC boiler applications. The PWHT significantly reduced the inhomogeneity in microstructure and mechanical properties, though some variation remained. There was a notable decrease in hardness for the weld metal, coarse-grained HAZ, and fine-grained HAZ after PWHT, while the hardness of the delta ferrite patches and inter-critical HAZ remained relatively unaffected, leading to continued microstructural heterogeneity. The tempering of martensite due to PWHT resulted in a drop in ultimate tensile strength and an increase in percentage elongation, with failure still occurring in the P92 base metal in the PWHT condition. Additionally, Charpy toughness increased significantly after PWHT, confirming the applicability of the PWHT for welded joints of P92 steel before final application. A good correlation between microstructure and mechanical properties was established based on these findings.

用于USC应用的10mm厚92级钢的激光焊接:显微结构和机械性能
高功率激光已被证明是更有效的焊接板与10毫米或更大的厚度。在本研究中,采用激光焊接工艺焊接了耐热P92钢板。激光焊接接头在焊接状态和焊后热处理(760°C, 2h)下进行了力学测试和金相表征。宏观组织分析表明,焊接接头熔透充分,内部缺陷可以忽略不计。热影响区宽度为1.77 mm,顶部焊缝金属宽度为3.83 mm,根部焊缝金属宽度为3.12 mm。焊接接头的显微组织和显微硬度均呈现不均匀性。粗晶HAZ中析出相可忽略不计的粗晶HAZ最大硬度为432 HV,而临界间HAZ的最小硬度为225 HV,这可能是由于形成了复杂的微观结构。在细晶HAZ和临界间HAZ中另一个重要的观察结果是存在两种类型的晶界:一种是由高密度的析出物装饰的,另一种是没有析出物的。这是导致微观结构不均匀的重要原因。焊缝金属呈板条细长马氏体组织,由于存在软铁素体斑块,其硬度变化明显。焊缝金属中未回火马氏体的硬度为385 ~ 403 HV,平均为398±7 HV。软铁氧体贴片的硬度在234 ~ 349 HV范围内。断裂发生在P92母材,拉伸强度和伸长率分别为1014±11 MPa和27±3%,与P92母材的极限拉伸强度和伸长率非常接近。夏比韧性测量值高于47焦耳的推荐值,确认焊接接头适用于USC锅炉应用。PWHT显著降低了微观组织和力学性能的不均匀性,但仍存在一些变化。PWHT后焊缝金属、粗晶HAZ和细晶HAZ的硬度显著降低,而δ铁素体斑块和临界间HAZ的硬度相对未受影响,导致组织不均匀性持续存在。PWHT导致马氏体回火,导致极限抗拉强度下降,延伸率增加,P92母材在PWHT条件下仍发生失效。此外,PWHT后的夏比韧性显著提高,证实了PWHT在最终应用前对P92钢焊接接头的适用性。在此基础上建立了显微组织与力学性能之间的良好相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of Civil and Mechanical Engineering
Archives of Civil and Mechanical Engineering 工程技术-材料科学:综合
CiteScore
6.80
自引率
9.10%
发文量
201
审稿时长
4 months
期刊介绍: Archives of Civil and Mechanical Engineering (ACME) publishes both theoretical and experimental original research articles which explore or exploit new ideas and techniques in three main areas: structural engineering, mechanics of materials and materials science. The aim of the journal is to advance science related to structural engineering focusing on structures, machines and mechanical systems. The journal also promotes advancement in the area of mechanics of materials, by publishing most recent findings in elasticity, plasticity, rheology, fatigue and fracture mechanics. The third area the journal is concentrating on is materials science, with emphasis on metals, composites, etc., their structures and properties as well as methods of evaluation. In addition to research papers, the Editorial Board welcomes state-of-the-art reviews on specialized topics. All such articles have to be sent to the Editor-in-Chief before submission for pre-submission review process. Only articles approved by the Editor-in-Chief in pre-submission process can be submitted to the journal for further processing. Approval in pre-submission stage doesn''t guarantee acceptance for publication as all papers are subject to a regular referee procedure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信