Electrochemical impedance spectroscopy in vivo for neurotechnology and bioelectronics

Brittany Hazelgrove, Lukas Matter, Brad Raos, Bruce Harland, Leo Cheng, Maria Asplund, Darren Svirskis
{"title":"Electrochemical impedance spectroscopy in vivo for neurotechnology and bioelectronics","authors":"Brittany Hazelgrove, Lukas Matter, Brad Raos, Bruce Harland, Leo Cheng, Maria Asplund, Darren Svirskis","doi":"10.1038/s44287-024-00126-6","DOIUrl":null,"url":null,"abstract":"Electrochemical impedance spectroscopy (EIS) is a well‐established electrochemical technique that provides invaluable information regarding the properties and functionality of electrodes within bioelectronic devices. EIS is the primary technique that reports on electrode properties in vivo using the implanted device itself. Nevertheless, there are many inconsistencies in the way this technique is implemented and reported on. Without a clear understanding of the experiment and experimental set‐up, it is challenging to draw meaningful conclusions and for results to be extrapolated across studies to benefit and advance the field. This Review discusses in vivo EIS experiments, specifically focusing on challenges in the experimental set‐up, the equipment used, data presentation and circuit modelling for neural interfaces. We propose guidelines for methodical reporting and a consistent, standardized use of terminology, paramount in understanding the performance of electrodes functioning at neural interfaces and promoting the transferability of findings across studies. Electrochemical impedance spectroscopy (EIS) describes the properties of the electrodes within bioelectronic devices. This Review discusses the value of EIS, key considerations for experimental set-up and how EIS can be used to understand biological changes during in vivo experiments.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":"2 2","pages":"110-124"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44287-024-00126-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical impedance spectroscopy (EIS) is a well‐established electrochemical technique that provides invaluable information regarding the properties and functionality of electrodes within bioelectronic devices. EIS is the primary technique that reports on electrode properties in vivo using the implanted device itself. Nevertheless, there are many inconsistencies in the way this technique is implemented and reported on. Without a clear understanding of the experiment and experimental set‐up, it is challenging to draw meaningful conclusions and for results to be extrapolated across studies to benefit and advance the field. This Review discusses in vivo EIS experiments, specifically focusing on challenges in the experimental set‐up, the equipment used, data presentation and circuit modelling for neural interfaces. We propose guidelines for methodical reporting and a consistent, standardized use of terminology, paramount in understanding the performance of electrodes functioning at neural interfaces and promoting the transferability of findings across studies. Electrochemical impedance spectroscopy (EIS) describes the properties of the electrodes within bioelectronic devices. This Review discusses the value of EIS, key considerations for experimental set-up and how EIS can be used to understand biological changes during in vivo experiments.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信