Graphite particles modified by ZnO atomic layer deposition for Li-ion battery anodes†

IF 3.2 Q2 CHEMISTRY, PHYSICAL
Energy advances Pub Date : 2025-01-03 DOI:10.1039/D4YA00518J
Ahmad Helaley, Han Yu and Xinhua Liang
{"title":"Graphite particles modified by ZnO atomic layer deposition for Li-ion battery anodes†","authors":"Ahmad Helaley, Han Yu and Xinhua Liang","doi":"10.1039/D4YA00518J","DOIUrl":null,"url":null,"abstract":"<p >Graphite, with a modest specific capacity of 372 mA h g<small><sup>−1</sup></small>, is a stable material for lithium-ion battery anodes. However, its capacity is inadequate to meet the growing power demands because the formation of an irregular solid electrolyte interphase (SEI) can result in unstable performance. In this research, we used a few cycles of atomic layer deposition (ALD) to deposit ZnO on graphite particles as an anode with improved electrochemical stability. Transmission electron microscopy revealed that ZnO was in the form of nanoparticles due to the inert surface properties of graphite and only a few cycles of ALD. Electrochemical characterization demonstrated that the ZnO ALD nanoparticles significantly inhibited dendrite growth, and X-ray photoelectron spectroscopy revealed that side reactions at the electrolyte–electrode interface were inhibited with the deposition of ZnO. The SEI layer was stabilized, which improved the cycling stability of the ZnO–graphite composite electrode. The electrode made of graphite with 2 cycles of ZnO ALD had about 20% higher discharge capacity than that of pristine graphite, and it remained stable at 420 mA h g<small><sup>−1</sup></small> after 500 cycles of charge/discharge. This surface modification technique can significantly increase the potential use of widely available graphite composites for high-performance batteries.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 2","pages":" 249-261"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00518j?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ya/d4ya00518j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Graphite, with a modest specific capacity of 372 mA h g−1, is a stable material for lithium-ion battery anodes. However, its capacity is inadequate to meet the growing power demands because the formation of an irregular solid electrolyte interphase (SEI) can result in unstable performance. In this research, we used a few cycles of atomic layer deposition (ALD) to deposit ZnO on graphite particles as an anode with improved electrochemical stability. Transmission electron microscopy revealed that ZnO was in the form of nanoparticles due to the inert surface properties of graphite and only a few cycles of ALD. Electrochemical characterization demonstrated that the ZnO ALD nanoparticles significantly inhibited dendrite growth, and X-ray photoelectron spectroscopy revealed that side reactions at the electrolyte–electrode interface were inhibited with the deposition of ZnO. The SEI layer was stabilized, which improved the cycling stability of the ZnO–graphite composite electrode. The electrode made of graphite with 2 cycles of ZnO ALD had about 20% higher discharge capacity than that of pristine graphite, and it remained stable at 420 mA h g−1 after 500 cycles of charge/discharge. This surface modification technique can significantly increase the potential use of widely available graphite composites for high-performance batteries.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信