SIMPNet: Spatial-Informed Motion Planning Network

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Davood Soleymanzadeh;Xiao Liang;Minghui Zheng
{"title":"SIMPNet: Spatial-Informed Motion Planning Network","authors":"Davood Soleymanzadeh;Xiao Liang;Minghui Zheng","doi":"10.1109/LRA.2025.3537317","DOIUrl":null,"url":null,"abstract":"Current robotic manipulators require fast and efficient motion-planning algorithms to operate in cluttered environments. State-of-the-art sampling-based motion planners struggle to scale to high-dimensional configuration spaces and are inefficient in complex environments. This inefficiency arises because these planners utilize either uniform or hand-crafted sampling heuristics within the configuration space. To address these challenges, we present the Spatial-informed Motion Planning Network (SIMPNet). SIMPNet consists of a stochastic graph neural network (GNN)-based sampling heuristic for informed sampling within the configuration space. The sampling heuristic of SIMPNet encodes the workspace embedding into the configuration space through a cross-attention mechanism. It encodes the manipulator's kinematic structure into a graph, which is used to generate informed samples within the framework of sampling-based motion planning algorithms. We have evaluated the performance of SIMPNet using a UR5e robotic manipulator operating within simple and complex workspaces, comparing it against baseline state-of-the-art motion planners. The evaluation results show the effectiveness and advantages of the proposed planner compared to the baseline planners.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 3","pages":"2870-2877"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10858745/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Current robotic manipulators require fast and efficient motion-planning algorithms to operate in cluttered environments. State-of-the-art sampling-based motion planners struggle to scale to high-dimensional configuration spaces and are inefficient in complex environments. This inefficiency arises because these planners utilize either uniform or hand-crafted sampling heuristics within the configuration space. To address these challenges, we present the Spatial-informed Motion Planning Network (SIMPNet). SIMPNet consists of a stochastic graph neural network (GNN)-based sampling heuristic for informed sampling within the configuration space. The sampling heuristic of SIMPNet encodes the workspace embedding into the configuration space through a cross-attention mechanism. It encodes the manipulator's kinematic structure into a graph, which is used to generate informed samples within the framework of sampling-based motion planning algorithms. We have evaluated the performance of SIMPNet using a UR5e robotic manipulator operating within simple and complex workspaces, comparing it against baseline state-of-the-art motion planners. The evaluation results show the effectiveness and advantages of the proposed planner compared to the baseline planners.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信