{"title":"Spin Mechanisms in Gd-Doped GaN Implanted With Oxygen/Carbon at Room Temperature","authors":"Vishal Saravade;Amirhossein Ghods;Chuanle Zhou;Ian Ferguson","doi":"10.1109/JSTQE.2025.3534663","DOIUrl":null,"url":null,"abstract":"Gadolinium-doped gallium nitride implanted with oxygen and carbon show carrier-mediated spin mechanisms at room temperature. As-grown Gd-doped GaN grown by metal-organic chemical vapor deposition using a tris(cyclopentadienyl) gadolinium precursor shows Ordinary Hall Effect and no ferromagnetism at room temperature. Upon O or C implantation in Gd-doped GaN, Anomalous Hall Effect that is indicative of carrier-mediated spin and ferromagnetism is observed. A good crystal quality is maintained even after implantation. O and C favor interstitial sites and occupy deep-level acceptor-type states in Gd-doped GaN. Room-temperature spin and ferromagnetism that is induced by gadolinium in Gd-doped GaN is activated by O and C that occupy interstitial sites. Carrier-mediated mechanism for spin functionalities shows potential for the control and manipulation of spin as a quantum state in gallium nitride. This makes GaGdN:O/C a potential semiconductor material base of interest for room temperature spintronics and quantum information science applications. In this paper, doping of O and C in Gd-doped GaN using ion implantation, structural characterization using X-ray diffraction, and spin-related measurement using Advanced Hall Effect are investigated, and corresponding discussions are made.","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":"31 5: Quantum Materials and Quantum Devices","pages":"1-9"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10855688/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Gadolinium-doped gallium nitride implanted with oxygen and carbon show carrier-mediated spin mechanisms at room temperature. As-grown Gd-doped GaN grown by metal-organic chemical vapor deposition using a tris(cyclopentadienyl) gadolinium precursor shows Ordinary Hall Effect and no ferromagnetism at room temperature. Upon O or C implantation in Gd-doped GaN, Anomalous Hall Effect that is indicative of carrier-mediated spin and ferromagnetism is observed. A good crystal quality is maintained even after implantation. O and C favor interstitial sites and occupy deep-level acceptor-type states in Gd-doped GaN. Room-temperature spin and ferromagnetism that is induced by gadolinium in Gd-doped GaN is activated by O and C that occupy interstitial sites. Carrier-mediated mechanism for spin functionalities shows potential for the control and manipulation of spin as a quantum state in gallium nitride. This makes GaGdN:O/C a potential semiconductor material base of interest for room temperature spintronics and quantum information science applications. In this paper, doping of O and C in Gd-doped GaN using ion implantation, structural characterization using X-ray diffraction, and spin-related measurement using Advanced Hall Effect are investigated, and corresponding discussions are made.
期刊介绍:
Papers published in the IEEE Journal of Selected Topics in Quantum Electronics fall within the broad field of science and technology of quantum electronics of a device, subsystem, or system-oriented nature. Each issue is devoted to a specific topic within this broad spectrum. Announcements of the topical areas planned for future issues, along with deadlines for receipt of manuscripts, are published in this Journal and in the IEEE Journal of Quantum Electronics. Generally, the scope of manuscripts appropriate to this Journal is the same as that for the IEEE Journal of Quantum Electronics. Manuscripts are published that report original theoretical and/or experimental research results that advance the scientific and technological base of quantum electronics devices, systems, or applications. The Journal is dedicated toward publishing research results that advance the state of the art or add to the understanding of the generation, amplification, modulation, detection, waveguiding, or propagation characteristics of coherent electromagnetic radiation having sub-millimeter and shorter wavelengths. In order to be suitable for publication in this Journal, the content of manuscripts concerned with subject-related research must have a potential impact on advancing the technological base of quantum electronic devices, systems, and/or applications. Potential authors of subject-related research have the responsibility of pointing out this potential impact. System-oriented manuscripts must be concerned with systems that perform a function previously unavailable or that outperform previously established systems that did not use quantum electronic components or concepts. Tutorial and review papers are by invitation only.