Comparative Analysis of a Low-Voltage CHB Inverter Without PWM and Two-Level IGBT/SiC Inverters for Electric Vehicles on Driving Cycles

IF 5.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Gaël Pongnot;Anatole Desreveaux;Clément Mayet;Denis Labrousse;Francis Roy
{"title":"Comparative Analysis of a Low-Voltage CHB Inverter Without PWM and Two-Level IGBT/SiC Inverters for Electric Vehicles on Driving Cycles","authors":"Gaël Pongnot;Anatole Desreveaux;Clément Mayet;Denis Labrousse;Francis Roy","doi":"10.1109/OJVT.2025.3531652","DOIUrl":null,"url":null,"abstract":"Electric Vehicles (EVs) based on Cascaded H Bridge (CHB) promise reduced consumption and improved modularity, repairability, resilience, and versatility. This study focuses on evaluating the efficiency of CHB inverters utilizing low-voltage Si MOSFETs to improve EV performance and range. Through a comprehensive system-level approach and modeling, a simulation of the CHB-based powertrain is developed and experimentally validated. Electrical and mechanical simulations are conducted separately and finally combined to streamline computation times. Subsequently, CHB-based EV is compared with standard two-level inverters (2LI) across different driving cycles, considering multiple sources of losses from the battery to the road. Despite increased battery losses, CHB proves reduction of consumption during urban driving cycles, making it a compelling choice for sustainable commuter vehicles.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":"6 ","pages":"542-553"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10845178","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10845178/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Electric Vehicles (EVs) based on Cascaded H Bridge (CHB) promise reduced consumption and improved modularity, repairability, resilience, and versatility. This study focuses on evaluating the efficiency of CHB inverters utilizing low-voltage Si MOSFETs to improve EV performance and range. Through a comprehensive system-level approach and modeling, a simulation of the CHB-based powertrain is developed and experimentally validated. Electrical and mechanical simulations are conducted separately and finally combined to streamline computation times. Subsequently, CHB-based EV is compared with standard two-level inverters (2LI) across different driving cycles, considering multiple sources of losses from the battery to the road. Despite increased battery losses, CHB proves reduction of consumption during urban driving cycles, making it a compelling choice for sustainable commuter vehicles.
电动汽车驱动循环用无PWM低压CHB逆变器与双电平IGBT/SiC逆变器的对比分析
基于级联H桥(CHB)的电动汽车(ev)有望降低能耗,提高模块化、可修复性、弹性和多功能性。本研究的重点是评估利用低压硅mosfet的CHB逆变器的效率,以提高EV性能和范围。通过全面的系统级方法和建模,开发了基于chb的动力总成仿真并进行了实验验证。电气仿真和机械仿真分别进行,最后结合起来进行,以简化计算时间。随后,将基于chb的电动汽车与标准的双电平逆变器(2LI)在不同的驾驶循环中进行比较,考虑电池到道路的多种损耗来源。尽管电池损耗增加,但CHB证明了在城市驾驶周期中减少消耗,使其成为可持续通勤车辆的一个引人注目的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
25
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信