Differential stimulation of phosphorus-mobilizing bacteria by common bean genotypes in Amazonian Dark Earth and Agricultural Soils with varying fertility levels

IF 3.4 3区 生物学 Q1 PLANT SCIENCES
Mariley Fonseca , Alexandre Pedrinho , Luis Fernando Merloti , João William Bossolani , Leandro Nascimento Lemos , Mayara Martins e Martins , Lucas William Mendes , Tsai Siu Mui
{"title":"Differential stimulation of phosphorus-mobilizing bacteria by common bean genotypes in Amazonian Dark Earth and Agricultural Soils with varying fertility levels","authors":"Mariley Fonseca ,&nbsp;Alexandre Pedrinho ,&nbsp;Luis Fernando Merloti ,&nbsp;João William Bossolani ,&nbsp;Leandro Nascimento Lemos ,&nbsp;Mayara Martins e Martins ,&nbsp;Lucas William Mendes ,&nbsp;Tsai Siu Mui","doi":"10.1016/j.rhisph.2025.101026","DOIUrl":null,"url":null,"abstract":"<div><div>Phosphorus (P) is an essential element for plant metabolism and often limits agricultural production due to its strong immobilization in soils. Microbial activity plays a crucial role in nutrient cycling, particularly in mobilizing P for plant uptake. This study evaluated how plants with different P use efficiencies influence the structure, diversity, and composition of the microbial community, with a focus on P-mobilizing bacteria, in soils with varying fertility levels. We hypothesized that plants with contrasting P use efficiencies differentially recruit rhizosphere microbiota associated with the P cycle. To test this hypothesis, a greenhouse experiment was conducted using two common bean (<em>Phaseolus vulgaris</em> L.) genotypes, BAT 477 (G1) and DOR 364 (G2), known for their contrasting P assimilation efficiencies. The common beans were grown in Amazonian Dark Earth (ADE) and agricultural soil (AS) until the pre-flowering phenological stage (R<sub>5</sub>). Rhizosphere and bulk soil (BS) samples were collected for microbiological, enzymatic, and P fractionation analyses. Amplicon sequencing revealed that the composition and relative abundance of the prokaryotic community were significantly influenced by the common bean genotypes across the different soil types. Acid phosphatase activity was approximately 22% higher in the rhizosphere than in BS for both genotypes, irrespective of soil type. Alkaline phosphatase activity, however, exhibited distinct patterns: in ADE, G1 showed 48% higher activity than BS, while in AS, G2 displayed the highest activity, with a 33.6% increase compared to BS. Redundancy analysis (RDA) in ADE revealed three distinct clusters (G1 ≠ G2 ≠ BS), indicating genotype-specific microbial recruitment patterns with significant positive correlations to the moderately labile P fraction. In AS, only two clusters were observed (G1+G2 and BS), with positive correlations to the moderately labile P fraction but no distinction between genotypes. These findings demonstrate that plants with differing P assimilation efficiencies distinctly modulate the rhizosphere microbiome, influencing P mobilization in a soil fertility-dependent manner. This study highlights the potential of leveraging plant-microbe interactions to enhance P cycling and utilization in agricultural systems, paving the way for more sustainable and efficient crop production practices.</div></div>","PeriodicalId":48589,"journal":{"name":"Rhizosphere","volume":"33 ","pages":"Article 101026"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rhizosphere","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452219825000114","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Phosphorus (P) is an essential element for plant metabolism and often limits agricultural production due to its strong immobilization in soils. Microbial activity plays a crucial role in nutrient cycling, particularly in mobilizing P for plant uptake. This study evaluated how plants with different P use efficiencies influence the structure, diversity, and composition of the microbial community, with a focus on P-mobilizing bacteria, in soils with varying fertility levels. We hypothesized that plants with contrasting P use efficiencies differentially recruit rhizosphere microbiota associated with the P cycle. To test this hypothesis, a greenhouse experiment was conducted using two common bean (Phaseolus vulgaris L.) genotypes, BAT 477 (G1) and DOR 364 (G2), known for their contrasting P assimilation efficiencies. The common beans were grown in Amazonian Dark Earth (ADE) and agricultural soil (AS) until the pre-flowering phenological stage (R5). Rhizosphere and bulk soil (BS) samples were collected for microbiological, enzymatic, and P fractionation analyses. Amplicon sequencing revealed that the composition and relative abundance of the prokaryotic community were significantly influenced by the common bean genotypes across the different soil types. Acid phosphatase activity was approximately 22% higher in the rhizosphere than in BS for both genotypes, irrespective of soil type. Alkaline phosphatase activity, however, exhibited distinct patterns: in ADE, G1 showed 48% higher activity than BS, while in AS, G2 displayed the highest activity, with a 33.6% increase compared to BS. Redundancy analysis (RDA) in ADE revealed three distinct clusters (G1 ≠ G2 ≠ BS), indicating genotype-specific microbial recruitment patterns with significant positive correlations to the moderately labile P fraction. In AS, only two clusters were observed (G1+G2 and BS), with positive correlations to the moderately labile P fraction but no distinction between genotypes. These findings demonstrate that plants with differing P assimilation efficiencies distinctly modulate the rhizosphere microbiome, influencing P mobilization in a soil fertility-dependent manner. This study highlights the potential of leveraging plant-microbe interactions to enhance P cycling and utilization in agricultural systems, paving the way for more sustainable and efficient crop production practices.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rhizosphere
Rhizosphere Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
5.70
自引率
8.10%
发文量
155
审稿时长
29 days
期刊介绍: Rhizosphere aims to advance the frontier of our understanding of plant-soil interactions. Rhizosphere is a multidisciplinary journal that publishes research on the interactions between plant roots, soil organisms, nutrients, and water. Except carbon fixation by photosynthesis, plants obtain all other elements primarily from soil through roots. We are beginning to understand how communications at the rhizosphere, with soil organisms and other plant species, affect root exudates and nutrient uptake. This rapidly evolving subject utilizes molecular biology and genomic tools, food web or community structure manipulations, high performance liquid chromatography, isotopic analysis, diverse spectroscopic analytics, tomography and other microscopy, complex statistical and modeling tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信