Melatonin modulates autophagy, mitochondria and antioxidant in the liver and brain of Perccottus glenni during recovery from freezing

IF 2.1 3区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Cunrun Ye, Zhaoyang Ning, Tingting Hu, Xiaoyu Zhao, Weijie Mu
{"title":"Melatonin modulates autophagy, mitochondria and antioxidant in the liver and brain of Perccottus glenni during recovery from freezing","authors":"Cunrun Ye,&nbsp;Zhaoyang Ning,&nbsp;Tingting Hu,&nbsp;Xiaoyu Zhao,&nbsp;Weijie Mu","doi":"10.1016/j.cbpa.2025.111824","DOIUrl":null,"url":null,"abstract":"<div><div>The Amur sleeper (<em>Percottus glenii</em>), a freeze tolerant fish species, can survive being frozen in ice, survival after recovery from freezing. This study investigated the role of melatonin in the recovery of <em>Perccottus glenni</em> following freezing. The fish were categorized into the following groups: non-treated control (Con), pinealectomy (Px), melatonin injection (Mlt), sham control (Sham), and saline injection control (Sal). The results revealed that the melatonin levels were affected by pinealectomy and melatonin injection. The liver and brain of the Px and Mlt groups exhibited autophagy after 4 h, along with the differential expression of endoplasmic reticulum stress-related genes. Furthermore, the activities of the mitochondrial complex initially increased at 4 h and then decreased by 12 h in the Px and Mlt groups, while antioxidant enzyme activities varied across groups and time points. These findings indicated that melatonin plays a key role in the recovery of <em>P. glenni</em> in a time-dependent manner, affecting autophagy, mitochondrial function, and antioxidant capacity. This study is the first to demonstrate melatonin's time-dependent role in facilitating the recovery of <em>P. glenni</em> after freezing, highlighting its critical involvement in modulating autophagy, mitochondrial function, and antioxidant processes. These findings shed light on the physiological mechanisms underlying freeze tolerance and recovery in fish, offering valuable insights for understanding and potentially enhancing the recovery processes in other species.</div></div>","PeriodicalId":55237,"journal":{"name":"Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology","volume":"303 ","pages":"Article 111824"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1095643325000224","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Amur sleeper (Percottus glenii), a freeze tolerant fish species, can survive being frozen in ice, survival after recovery from freezing. This study investigated the role of melatonin in the recovery of Perccottus glenni following freezing. The fish were categorized into the following groups: non-treated control (Con), pinealectomy (Px), melatonin injection (Mlt), sham control (Sham), and saline injection control (Sal). The results revealed that the melatonin levels were affected by pinealectomy and melatonin injection. The liver and brain of the Px and Mlt groups exhibited autophagy after 4 h, along with the differential expression of endoplasmic reticulum stress-related genes. Furthermore, the activities of the mitochondrial complex initially increased at 4 h and then decreased by 12 h in the Px and Mlt groups, while antioxidant enzyme activities varied across groups and time points. These findings indicated that melatonin plays a key role in the recovery of P. glenni in a time-dependent manner, affecting autophagy, mitochondrial function, and antioxidant capacity. This study is the first to demonstrate melatonin's time-dependent role in facilitating the recovery of P. glenni after freezing, highlighting its critical involvement in modulating autophagy, mitochondrial function, and antioxidant processes. These findings shed light on the physiological mechanisms underlying freeze tolerance and recovery in fish, offering valuable insights for understanding and potentially enhancing the recovery processes in other species.

Abstract Image

褪黑素对冷冻恢复期绿绒螯虾肝、脑自噬、线粒体和抗氧化剂的调节作用
阿穆尔河(Percottus glenii)是一种耐寒鱼类,可以在冰冻中存活,从冰冻中恢复后存活。本研究探讨了褪黑素在棉铃虫冷冻后恢复中的作用。这些鱼被分为以下组:未处理对照组(Con)、松果体切除术组(Px)、褪黑素注射组(Mlt)、假对照组(sham)和生理盐水注射组(Sal)。结果显示,松果体切除术和褪黑素注射对褪黑素水平有影响。4 h后,Px组和Mlt组的肝脏和大脑出现自噬,内质网应激相关基因表达差异。此外,Px和Mlt组线粒体复合体活性在4 h先升高,12 h后下降,而抗氧化酶活性在不同组和时间点存在差异。这些研究结果表明,褪黑激素在P. glenni的恢复中发挥关键作用,并以时间依赖性的方式影响自噬、线粒体功能和抗氧化能力。这项研究首次证明了褪黑素在促进格伦氏假体冷冻后恢复中的时间依赖性作用,强调了它在调节自噬、线粒体功能和抗氧化过程中的关键作用。这些发现揭示了鱼类抗冻和恢复的生理机制,为理解和潜在地增强其他物种的恢复过程提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
4.30%
发文量
155
审稿时长
3 months
期刊介绍: Part A: Molecular & Integrative Physiology of Comparative Biochemistry and Physiology. This journal covers molecular, cellular, integrative, and ecological physiology. Topics include bioenergetics, circulation, development, excretion, ion regulation, endocrinology, neurobiology, nutrition, respiration, and thermal biology. Study on regulatory mechanisms at any level of organization such as signal transduction and cellular interaction and control of behavior are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信