Mechanochemically modified graphene nanoplatelets for high-performance polycarbonate composites

Xiao Su , Seung Ho Lee , Yangzhe Hou , Nikki Stanford , Qingshi Meng , Hsu-Chiang Kuan , Xianhu Liu , Jun Ma
{"title":"Mechanochemically modified graphene nanoplatelets for high-performance polycarbonate composites","authors":"Xiao Su ,&nbsp;Seung Ho Lee ,&nbsp;Yangzhe Hou ,&nbsp;Nikki Stanford ,&nbsp;Qingshi Meng ,&nbsp;Hsu-Chiang Kuan ,&nbsp;Xianhu Liu ,&nbsp;Jun Ma","doi":"10.1016/j.smmf.2025.100072","DOIUrl":null,"url":null,"abstract":"<div><div>The exceptional mechanical, electrical and thermal properties of graphene and its derivative have established their vital role in developing novel polymer nanocomposites. However, it is a great challenge to achieve uniform dispersion of graphene and strong interfacial bonding within polymer matrices, especially by industry-compatible methods such as melt compounding. Different to traditional solvent-based modification methods, our mechanochemical approach involves the surface modification of graphene nanoplatelets (GNPs) with a long-chain surfactant – Jeffamine M2070. The process is scalable, environmentally friendly and solvent-free. GNPs, ball-milled GNPs (BMGNPs) and M2070-modified GNPs (MmGNPs) were respectively incorporated into a polycarbonate matrix using twin-screw extrusion, to produce three groups of nanocomposites. GNPs exhibited aggregation due to unideal compatibility with the matrix, whereas BMGNPs showed reduced aggregation owing to mechanical exfoliation. MmGNPs demonstrated the best compatibility with polycarbonate and thus exhibited the most uniform dispersion and significant improvements in mechanical performance, e.g., 16.9 % in tensile strength and 36.4 % in Young's modulus. Despite the defects caused by the mechanochemical modification, MmGNPs in the matrix resulted in an increment of 50 % in thermal conductivity, reaching 0.32 W m<sup>−1</sup> K<sup>−1</sup> in comparison with ∼0.18 W m<sup>−1</sup> K<sup>−1</sup> for polycarbonate. This study highlights the importance of surface modification by mechanochemical processing techniques in enhancing the exfoliation and dispersion of graphene and thus the properties of thermoplastics.</div></div>","PeriodicalId":101164,"journal":{"name":"Smart Materials in Manufacturing","volume":"3 ","pages":"Article 100072"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials in Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772810225000029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The exceptional mechanical, electrical and thermal properties of graphene and its derivative have established their vital role in developing novel polymer nanocomposites. However, it is a great challenge to achieve uniform dispersion of graphene and strong interfacial bonding within polymer matrices, especially by industry-compatible methods such as melt compounding. Different to traditional solvent-based modification methods, our mechanochemical approach involves the surface modification of graphene nanoplatelets (GNPs) with a long-chain surfactant – Jeffamine M2070. The process is scalable, environmentally friendly and solvent-free. GNPs, ball-milled GNPs (BMGNPs) and M2070-modified GNPs (MmGNPs) were respectively incorporated into a polycarbonate matrix using twin-screw extrusion, to produce three groups of nanocomposites. GNPs exhibited aggregation due to unideal compatibility with the matrix, whereas BMGNPs showed reduced aggregation owing to mechanical exfoliation. MmGNPs demonstrated the best compatibility with polycarbonate and thus exhibited the most uniform dispersion and significant improvements in mechanical performance, e.g., 16.9 % in tensile strength and 36.4 % in Young's modulus. Despite the defects caused by the mechanochemical modification, MmGNPs in the matrix resulted in an increment of 50 % in thermal conductivity, reaching 0.32 W m−1 K−1 in comparison with ∼0.18 W m−1 K−1 for polycarbonate. This study highlights the importance of surface modification by mechanochemical processing techniques in enhancing the exfoliation and dispersion of graphene and thus the properties of thermoplastics.

Abstract Image

高性能聚碳酸酯复合材料的机械化学改性石墨烯纳米片
石墨烯及其衍生物具有优异的机械、电学和热性能,在开发新型聚合物纳米复合材料中发挥着重要作用。然而,实现石墨烯的均匀分散和聚合物基体内的强界面键合是一个巨大的挑战,特别是通过工业兼容的方法,如熔融复合。与传统的基于溶剂的改性方法不同,我们的机械化学方法涉及使用长链表面活性剂- Jeffamine M2070对石墨烯纳米片(GNPs)进行表面改性。该工艺可扩展,环保,无溶剂。采用双螺杆挤出技术将GNPs、球磨GNPs (BMGNPs)和m2070改性GNPs (MmGNPs)分别掺入聚碳酸酯基体中,制备了三组纳米复合材料。GNPs由于与基质相容性不理想而表现出聚集性,而BMGNPs由于机械剥落而表现出聚集性降低。MmGNPs表现出与聚碳酸酯的最佳相容性,因此表现出最均匀的分散和显著的力学性能改善,例如抗拉强度提高16.9%,杨氏模量提高36.4%。尽管存在机械化学修饰导致的缺陷,基质中的MmGNPs导致导热系数增加50%,达到0.32 W m−1 K−1,而聚碳酸酯的导热系数为0.18 W m−1 K−1。本研究强调了机械化学处理技术在增强石墨烯的剥离和分散以及热塑性塑料性能方面的表面改性的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信