Modulator and sensor based on in-plane mode weak coupling in borophene metamaterial

IF 2.5 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Wankun Gao, Fang Chen , Wenxing Yang
{"title":"Modulator and sensor based on in-plane mode weak coupling in borophene metamaterial","authors":"Wankun Gao,&nbsp;Fang Chen ,&nbsp;Wenxing Yang","doi":"10.1016/j.photonics.2025.101366","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, tunable plasmon induced transparency-like (PIT-like) effect based on a borophene-based metamaterial structure is numerically investigated. The unit cell of the metamaterial is comprised of two borophene strips and a central borophene rectangle, both substructures can excite in-plane bright modes. We also discussed the influence of geometric parameters and external refractive index on PIT-like spectral lines. By adjusting the electron density of borophene, the PIT-like peak can be dynamically tuned. Particularly, by tuning the difference in electron densities between the two substructures, the width of the PIT-like window can be effectively modulated, and high-performance optical switching with modulation depth of <span><math><mrow><mn>85.1</mn><mo>%</mo></mrow></math></span> is achieved. Furthermore, the proposed borophene plane metamaterial structure exhibits excellent significant slow light effect, a maximum group delay of <span><math><mrow><mn>18.31</mn><mi>f</mi><mi>s</mi></mrow></math></span>is achieved, and it also demonstrates prominent sensing performance, the maximum refractive index sensitivity of <span><math><mrow><mn>56.47</mn><mspace></mspace><mspace></mspace><mi>T</mi><mi>H</mi><mi>z</mi><mo>/</mo><mi>R</mi><mi>I</mi><mi>U</mi></mrow></math></span> and FOM of about <span><math><mrow><mn>51.29</mn><mspace></mspace><mspace></mspace><mi>R</mi><mi>I</mi><msup><mrow><mi>U</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>are achieved. The results of this research have potential applications in optical switches, modulators, and slow-light devices.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"63 ","pages":"Article 101366"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569441025000161","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, tunable plasmon induced transparency-like (PIT-like) effect based on a borophene-based metamaterial structure is numerically investigated. The unit cell of the metamaterial is comprised of two borophene strips and a central borophene rectangle, both substructures can excite in-plane bright modes. We also discussed the influence of geometric parameters and external refractive index on PIT-like spectral lines. By adjusting the electron density of borophene, the PIT-like peak can be dynamically tuned. Particularly, by tuning the difference in electron densities between the two substructures, the width of the PIT-like window can be effectively modulated, and high-performance optical switching with modulation depth of 85.1% is achieved. Furthermore, the proposed borophene plane metamaterial structure exhibits excellent significant slow light effect, a maximum group delay of 18.31fsis achieved, and it also demonstrates prominent sensing performance, the maximum refractive index sensitivity of 56.47THz/RIU and FOM of about 51.29RIU1are achieved. The results of this research have potential applications in optical switches, modulators, and slow-light devices.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
3.70%
发文量
77
审稿时长
62 days
期刊介绍: This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信