A counterexample to the coarse Menger conjecture

IF 1.2 1区 数学 Q1 MATHEMATICS
Tung Nguyen , Alex Scott , Paul Seymour
{"title":"A counterexample to the coarse Menger conjecture","authors":"Tung Nguyen ,&nbsp;Alex Scott ,&nbsp;Paul Seymour","doi":"10.1016/j.jctb.2025.01.004","DOIUrl":null,"url":null,"abstract":"<div><div>Menger's well-known theorem from 1927 characterizes when it is possible to find <em>k</em> vertex-disjoint paths between two sets of vertices in a graph <em>G</em>. Recently, Georgakopoulos and Papasoglu and, independently, Albrechtsen, Huynh, Jacobs, Knappe and Wollan conjectured a coarse analogue of Menger's theorem, when the <em>k</em> paths are required to be pairwise at some distance at least <em>d</em>. The result is known for <span><math><mi>k</mi><mo>≤</mo><mn>2</mn></math></span>, but we will show that it is false for all <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span>, even if <em>G</em> is constrained to have maximum degree at most three. We also give a simpler proof of the result when <span><math><mi>k</mi><mo>=</mo><mn>2</mn></math></span>.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"173 ","pages":"Pages 68-82"},"PeriodicalIF":1.2000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895625000061","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Menger's well-known theorem from 1927 characterizes when it is possible to find k vertex-disjoint paths between two sets of vertices in a graph G. Recently, Georgakopoulos and Papasoglu and, independently, Albrechtsen, Huynh, Jacobs, Knappe and Wollan conjectured a coarse analogue of Menger's theorem, when the k paths are required to be pairwise at some distance at least d. The result is known for k2, but we will show that it is false for all k3, even if G is constrained to have maximum degree at most three. We also give a simpler proof of the result when k=2.
粗糙门格尔猜想的反例
最近,Georgakopoulos和Papasoglu,以及独立的Albrechtsen, Huynh, Jacobs, Knappe和Wollan推测了门格尔定理的一个粗略的类似,当k路径被要求在至少d的距离上配对时,结果是已知的k≤2,但我们将证明它对所有k≥3都是错误的。即使G被约束最大度不超过3。我们还给出了k=2时的一个更简单的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信