Gustavo Henrique Halmenschlager , José Carlos dos Santos Albarello , Maria Clara Albuquerque Brandão , Liliam Fernandes de Oliveira , Thiago Torres da Matta
{"title":"The shear modulus of the vastus lateralis muscle does not follow the passive residual torque enhancement in the knee extensors","authors":"Gustavo Henrique Halmenschlager , José Carlos dos Santos Albarello , Maria Clara Albuquerque Brandão , Liliam Fernandes de Oliveira , Thiago Torres da Matta","doi":"10.1016/j.jbiomech.2025.112567","DOIUrl":null,"url":null,"abstract":"<div><div><em>In vitro</em> experiments define passive force enhancement as the increase in steady-state passive force following the deactivation of an actively stretched muscle, in contrast to a purely passive stretch. This phenomenon, linked to residual force enhancement, is also observed in voluntarily contracted muscles as passive residual torque enhancement (RTE<sub>pass</sub>). While mechanisms remain unclear, titin stiffness likey plays a key role. Supersonic shear wave elastography (SSI) estimates tissue stiffness via the shear modulus (μ). The study aimed to assess whether RTE<sub>pass</sub> of the knee extensor muscles is accompanied by an increase in vastus lateralis stiffness (RμE<sub>pass</sub>) as measured by shear wave elastography. Passive torque was measured in 20 healthy young adults at a knee flexion angle of 100° before and after both isometric contractions (control protocol) and isometric contractions preceded by an eccentric contraction at 30°/s (from 70° to 100°). The comparison of protocols revealed a significant mean RTE<sub>pass</sub> of 1.03 N·m (16.5 %; <em>p</em> < 0.001), confirming the RTE<sub>pass</sub> in knee extensors. Although the experimental protocol showed a significant change in μ from the Before- to Post-contraction moment (5.89 %; <em>p</em> = 0.041), no differences in μ were observed between protocols at any post-contraction moments (<em>p</em> ≥ 0.191). Spearman correlation analysis indicated a weak, non-significant correlation between RTE<sub>pass</sub> and RμE<sub>pass</sub> (<em>r</em>s = 0.219; <em>p</em> = 0.352). These findings suggest that changes in vastus lateralis stiffness, as measured by SSI, are insufficient to explain RTE<sub>pass.</sub> While the literature identifies titin as a primary mechanism for passive residual torque enhancement, SSI elastography did not detect this phenomenon through solely vastus lateralis stiffness.</div></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"182 ","pages":"Article 112567"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021929025000788","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In vitro experiments define passive force enhancement as the increase in steady-state passive force following the deactivation of an actively stretched muscle, in contrast to a purely passive stretch. This phenomenon, linked to residual force enhancement, is also observed in voluntarily contracted muscles as passive residual torque enhancement (RTEpass). While mechanisms remain unclear, titin stiffness likey plays a key role. Supersonic shear wave elastography (SSI) estimates tissue stiffness via the shear modulus (μ). The study aimed to assess whether RTEpass of the knee extensor muscles is accompanied by an increase in vastus lateralis stiffness (RμEpass) as measured by shear wave elastography. Passive torque was measured in 20 healthy young adults at a knee flexion angle of 100° before and after both isometric contractions (control protocol) and isometric contractions preceded by an eccentric contraction at 30°/s (from 70° to 100°). The comparison of protocols revealed a significant mean RTEpass of 1.03 N·m (16.5 %; p < 0.001), confirming the RTEpass in knee extensors. Although the experimental protocol showed a significant change in μ from the Before- to Post-contraction moment (5.89 %; p = 0.041), no differences in μ were observed between protocols at any post-contraction moments (p ≥ 0.191). Spearman correlation analysis indicated a weak, non-significant correlation between RTEpass and RμEpass (rs = 0.219; p = 0.352). These findings suggest that changes in vastus lateralis stiffness, as measured by SSI, are insufficient to explain RTEpass. While the literature identifies titin as a primary mechanism for passive residual torque enhancement, SSI elastography did not detect this phenomenon through solely vastus lateralis stiffness.
期刊介绍:
The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership.
Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to:
-Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells.
-Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions.
-Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response.
-Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing.
-Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine.
-Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction.
-Molecular Biomechanics - Mechanical analyses of biomolecules.
-Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints.
-Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics.
-Sports Biomechanics - Mechanical analyses of sports performance.