Methodologic insights aimed to set-up an innovative Laser Direct InfraRed (LDIR)-based method for the detection and characterization of microplastics in wastewaters

IF 8.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Benedetta Pagliaccia , Miriam Ascolese , Elena Vannini , Emiliano Carretti , Claudio Lubello , Riccardo Gori
{"title":"Methodologic insights aimed to set-up an innovative Laser Direct InfraRed (LDIR)-based method for the detection and characterization of microplastics in wastewaters","authors":"Benedetta Pagliaccia ,&nbsp;Miriam Ascolese ,&nbsp;Elena Vannini ,&nbsp;Emiliano Carretti ,&nbsp;Claudio Lubello ,&nbsp;Riccardo Gori","doi":"10.1016/j.scitotenv.2025.178817","DOIUrl":null,"url":null,"abstract":"<div><div>Wastewater treatment plants (WWTPs) are generally reported to be effective in removing microplastics (MPs). Nevertheless, the lack of standardized methodologies for their counting and characterization hinders direct comparison across literature reports, limiting the establishment of reliable benchmarks. In this perspective, this work aimed to provide methodological insights on a feasible approach for detecting and characterizing MPs in both raw and treated wastewater by exploiting the innovative Laser Direct InfraRed (LDIR) technique. MPs of various polymeric nature, size and shape were specially produced and used to fine-tune and validate a LDIR-based method for both their chemical identification and size/morphology description, while well-established techniques were employed to evaluate the reliability of collected data. The robustness of the tailored protocol was then assessed through a monitoring campaign conducted at a large municipal WWTP in Tuscany (Italy), for which an average MPs removal efficiency of 82 % was estimated. Various polymers were detected in the processed samples, with a high relative content of cellulose-based materials in both influent and effluent (32 % and 54 % of particles, respectively). Most MPs had a characteristic size lower than 100 μm, with particles &lt;30 μm representing about 45 % and 29 % of MPs in the influent and effluent, respectively. MPs were in the form of fibers (25–39 %), fragments (32–43 %) and pellets (29–32 %). The consistency of the obtained results suggested the robustness and reliability of the proposed LDIR-based method, highlighting its potential for more in-depth monitoring of MPs in WWTPs.</div></div>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"967 ","pages":"Article 178817"},"PeriodicalIF":8.2000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048969725004528","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Wastewater treatment plants (WWTPs) are generally reported to be effective in removing microplastics (MPs). Nevertheless, the lack of standardized methodologies for their counting and characterization hinders direct comparison across literature reports, limiting the establishment of reliable benchmarks. In this perspective, this work aimed to provide methodological insights on a feasible approach for detecting and characterizing MPs in both raw and treated wastewater by exploiting the innovative Laser Direct InfraRed (LDIR) technique. MPs of various polymeric nature, size and shape were specially produced and used to fine-tune and validate a LDIR-based method for both their chemical identification and size/morphology description, while well-established techniques were employed to evaluate the reliability of collected data. The robustness of the tailored protocol was then assessed through a monitoring campaign conducted at a large municipal WWTP in Tuscany (Italy), for which an average MPs removal efficiency of 82 % was estimated. Various polymers were detected in the processed samples, with a high relative content of cellulose-based materials in both influent and effluent (32 % and 54 % of particles, respectively). Most MPs had a characteristic size lower than 100 μm, with particles <30 μm representing about 45 % and 29 % of MPs in the influent and effluent, respectively. MPs were in the form of fibers (25–39 %), fragments (32–43 %) and pellets (29–32 %). The consistency of the obtained results suggested the robustness and reliability of the proposed LDIR-based method, highlighting its potential for more in-depth monitoring of MPs in WWTPs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信