Geospatial and NDBI approaches for the Musi River basin morphometric studies in the metropolitan urban Cities of India

IF 2.8 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Pradeep Kumar Badapalli , Sakram Gugulothu , Anusha Boya Nakkala
{"title":"Geospatial and NDBI approaches for the Musi River basin morphometric studies in the metropolitan urban Cities of India","authors":"Pradeep Kumar Badapalli ,&nbsp;Sakram Gugulothu ,&nbsp;Anusha Boya Nakkala","doi":"10.1016/j.asr.2024.12.010","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to advance the understanding of hydrological dynamics and geomorphological characteristics of the Musi River Basin through the novel application of Remote Sensing (RS) and Geographical Information System (GIS)-based morphometric analysis across three delineated sub-basins (SB-1, SB-2, SB-3). By examining parameters such as stream order, bifurcation ratio, drainage density, and land cover changes using the Normalized Difference Built-up Index (NDBI), the study provides a comprehensive overview of the basin’s surface hydrology and urbanization impact. Key findings reveal low surface runoff and high permeability, supported by low drainage density (0.64 km/km2) and stream frequency (0.48 streams/km2). SB-3′s elevated bifurcation ratio (5.0) highlights substantial structural control, contrasting with moderate bifurcation ratios in SB-1 and SB-2. Hypsometric analysis indicates a transition from youthful to mature phases across the basin, with SB-3′s ruggedness values reflecting moderate erosion. A 21-year land cover analysis (2000–2021) based on NDBI highlights notable changes: water bodies (2.67 %), moisture soils (5.04 %), built-up lands (3.10 %), and vegetation (2.74 %) have all increased, while fallow lands/wastelands decreased by 13.54 %. The urban expansion, driven by rapid population growth, underscores pressing ecosystem challenges. Validation of the land cover analysis yielded a robust AUC score of 0.840, affirming the reliability of the NDBI-based classification. This research showcases the efficacy of DEM-based morphometric methods for precise catchment delineation and stream order classification, providing critical insights for effective water resource management and watershed planning in the Musi River Basin.</div></div>","PeriodicalId":50850,"journal":{"name":"Advances in Space Research","volume":"75 4","pages":"Pages 3375-3396"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Space Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0273117724012225","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to advance the understanding of hydrological dynamics and geomorphological characteristics of the Musi River Basin through the novel application of Remote Sensing (RS) and Geographical Information System (GIS)-based morphometric analysis across three delineated sub-basins (SB-1, SB-2, SB-3). By examining parameters such as stream order, bifurcation ratio, drainage density, and land cover changes using the Normalized Difference Built-up Index (NDBI), the study provides a comprehensive overview of the basin’s surface hydrology and urbanization impact. Key findings reveal low surface runoff and high permeability, supported by low drainage density (0.64 km/km2) and stream frequency (0.48 streams/km2). SB-3′s elevated bifurcation ratio (5.0) highlights substantial structural control, contrasting with moderate bifurcation ratios in SB-1 and SB-2. Hypsometric analysis indicates a transition from youthful to mature phases across the basin, with SB-3′s ruggedness values reflecting moderate erosion. A 21-year land cover analysis (2000–2021) based on NDBI highlights notable changes: water bodies (2.67 %), moisture soils (5.04 %), built-up lands (3.10 %), and vegetation (2.74 %) have all increased, while fallow lands/wastelands decreased by 13.54 %. The urban expansion, driven by rapid population growth, underscores pressing ecosystem challenges. Validation of the land cover analysis yielded a robust AUC score of 0.840, affirming the reliability of the NDBI-based classification. This research showcases the efficacy of DEM-based morphometric methods for precise catchment delineation and stream order classification, providing critical insights for effective water resource management and watershed planning in the Musi River Basin.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Space Research
Advances in Space Research 地学天文-地球科学综合
CiteScore
5.20
自引率
11.50%
发文量
800
审稿时长
5.8 months
期刊介绍: The COSPAR publication Advances in Space Research (ASR) is an open journal covering all areas of space research including: space studies of the Earth''s surface, meteorology, climate, the Earth-Moon system, planets and small bodies of the solar system, upper atmospheres, ionospheres and magnetospheres of the Earth and planets including reference atmospheres, space plasmas in the solar system, astrophysics from space, materials sciences in space, fundamental physics in space, space debris, space weather, Earth observations of space phenomena, etc. NB: Please note that manuscripts related to life sciences as related to space are no more accepted for submission to Advances in Space Research. Such manuscripts should now be submitted to the new COSPAR Journal Life Sciences in Space Research (LSSR). All submissions are reviewed by two scientists in the field. COSPAR is an interdisciplinary scientific organization concerned with the progress of space research on an international scale. Operating under the rules of ICSU, COSPAR ignores political considerations and considers all questions solely from the scientific viewpoint.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信