The role of injection method on residual trapping: Insights into bridging scales and heterogeneity

IF 4 2区 环境科学与生态学 Q1 WATER RESOURCES
Catherine Spurin , Sharon Ellman , Tom Bultreys , Takeshi Kurotori , Sally Benson , Hamdi A. Tchelepi
{"title":"The role of injection method on residual trapping: Insights into bridging scales and heterogeneity","authors":"Catherine Spurin ,&nbsp;Sharon Ellman ,&nbsp;Tom Bultreys ,&nbsp;Takeshi Kurotori ,&nbsp;Sally Benson ,&nbsp;Hamdi A. Tchelepi","doi":"10.1016/j.advwatres.2025.104913","DOIUrl":null,"url":null,"abstract":"<div><div>CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> injection into subsurface reservoirs provides a long-term solution to anthropogenic emissions. A variable injection rate (such as ramping the flow rate up or down) provides flexibility to injection sites, and could influence the amount of residual trapping. Observations made in cm-scale samples showed that starting at a low flow rate established a flow pathway across the core at a low capillary pressure, leading to a long-term reduction in pore space utilization, as increases in flux were accommodated with little change in saturation. In this work, the scalability of these observations is evaluated by performing experiments with variable injection rates in larger samples: 5 cm diameter and 12 cm length, compared to 2.5 cm diameter and 4.5 cm length in previous work (<span><span>Spurin et al., 2024</span></span>). We observed that starting at a low flow rate did not lead to a long-term reduction in pore space utilization. Instead, saturation increased significantly with increased flux, leading to a higher pore space utilization than experiments where injection started with the higher flow rate. The difference in observations depending on sample size and the role of heterogeneity highlights potential uncertainties in upscaling experimental observations to field-scale applications.</div></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"197 ","pages":"Article 104913"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Water Resources","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0309170825000272","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

CO2 injection into subsurface reservoirs provides a long-term solution to anthropogenic emissions. A variable injection rate (such as ramping the flow rate up or down) provides flexibility to injection sites, and could influence the amount of residual trapping. Observations made in cm-scale samples showed that starting at a low flow rate established a flow pathway across the core at a low capillary pressure, leading to a long-term reduction in pore space utilization, as increases in flux were accommodated with little change in saturation. In this work, the scalability of these observations is evaluated by performing experiments with variable injection rates in larger samples: 5 cm diameter and 12 cm length, compared to 2.5 cm diameter and 4.5 cm length in previous work (Spurin et al., 2024). We observed that starting at a low flow rate did not lead to a long-term reduction in pore space utilization. Instead, saturation increased significantly with increased flux, leading to a higher pore space utilization than experiments where injection started with the higher flow rate. The difference in observations depending on sample size and the role of heterogeneity highlights potential uncertainties in upscaling experimental observations to field-scale applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Water Resources
Advances in Water Resources 环境科学-水资源
CiteScore
9.40
自引率
6.40%
发文量
171
审稿时长
36 days
期刊介绍: Advances in Water Resources provides a forum for the presentation of fundamental scientific advances in the understanding of water resources systems. The scope of Advances in Water Resources includes any combination of theoretical, computational, and experimental approaches used to advance fundamental understanding of surface or subsurface water resources systems or the interaction of these systems with the atmosphere, geosphere, biosphere, and human societies. Manuscripts involving case studies that do not attempt to reach broader conclusions, research on engineering design, applied hydraulics, or water quality and treatment, as well as applications of existing knowledge that do not advance fundamental understanding of hydrological processes, are not appropriate for Advances in Water Resources. Examples of appropriate topical areas that will be considered include the following: • Surface and subsurface hydrology • Hydrometeorology • Environmental fluid dynamics • Ecohydrology and ecohydrodynamics • Multiphase transport phenomena in porous media • Fluid flow and species transport and reaction processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信