Ovalbumin alters DAF-16 Class-II/I gene expressions via insulin/insulin-like growth factor-1 signaling to initiate the innate immune response of Caenorhabditis elegans
Dong Liu , Haibing Pei , Kexin Yao , Jinyan Gao , Hongbing Chen , Ping Tong
{"title":"Ovalbumin alters DAF-16 Class-II/I gene expressions via insulin/insulin-like growth factor-1 signaling to initiate the innate immune response of Caenorhabditis elegans","authors":"Dong Liu , Haibing Pei , Kexin Yao , Jinyan Gao , Hongbing Chen , Ping Tong","doi":"10.1016/j.molimm.2025.02.007","DOIUrl":null,"url":null,"abstract":"<div><div>Innate immunity, as a significant defense system of the body, plays a key role in allergic reactions, but the mechanism of how food allergens trigger innate immune signaling is still unclear. Ovalbumin (OVA) is a model allergen in food allergy studies. Previous studies by our group have demonstrated that the innate immunity of <em>Caenorhabditis elegans</em> (<em>C. elegans</em>) elicited by OVA treatment was related to the insulin/insulin-like growth factor-1 signaling (IIS) pathway, but the details remain unknown. Therefore, in this study, the molecular mechanism of innate immune signaling transduction of <em>C. elegans</em> stimulated by OVA was determined using genetic mutations as well as RT-PCR, GFP fluorescence visualization monitoring, and slow-killing experiments. Results showed that the expression levels of DAF-16-class-I/II genes in the IIS pathway were significantly changed in <em>C. elegans</em> after OVA treatment, and the upstream gene <em>daf-2</em> played an important role, which up-regulated the levels of DAF-16-class-II genes <em>dod-22</em> and F55G11.8 by the <em>daf-2</em>-<em>pqm-1</em> pathway, and down-regulated the level of DAF-16-class-I gene <em>thn-2</em> by the <em>daf-2</em>-<em>daf-16</em> pathway. Moreover, the upstream genes <em>daf-2</em> and <em>nhr-14</em>, and the transcription factors DAF-16, PQM-1, and SKN-1 in the IIS pathway all participated in the up-regulations of DAF-16-class-II genes <em>dod-17</em>, <em>dod-24</em>, and F55G11.2. In conclusion, details of OVA activating innate immunity in <em>C. elegans</em> through the IIS pathway are reported here, and the results can be further extrapolated to mammals, which will contribute to a better understanding of the mechanism of the occurrence of food allergic reactions from the perspective of innate immunity.</div></div>","PeriodicalId":18938,"journal":{"name":"Molecular immunology","volume":"179 ","pages":"Pages 116-127"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0161589025000380","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Innate immunity, as a significant defense system of the body, plays a key role in allergic reactions, but the mechanism of how food allergens trigger innate immune signaling is still unclear. Ovalbumin (OVA) is a model allergen in food allergy studies. Previous studies by our group have demonstrated that the innate immunity of Caenorhabditis elegans (C. elegans) elicited by OVA treatment was related to the insulin/insulin-like growth factor-1 signaling (IIS) pathway, but the details remain unknown. Therefore, in this study, the molecular mechanism of innate immune signaling transduction of C. elegans stimulated by OVA was determined using genetic mutations as well as RT-PCR, GFP fluorescence visualization monitoring, and slow-killing experiments. Results showed that the expression levels of DAF-16-class-I/II genes in the IIS pathway were significantly changed in C. elegans after OVA treatment, and the upstream gene daf-2 played an important role, which up-regulated the levels of DAF-16-class-II genes dod-22 and F55G11.8 by the daf-2-pqm-1 pathway, and down-regulated the level of DAF-16-class-I gene thn-2 by the daf-2-daf-16 pathway. Moreover, the upstream genes daf-2 and nhr-14, and the transcription factors DAF-16, PQM-1, and SKN-1 in the IIS pathway all participated in the up-regulations of DAF-16-class-II genes dod-17, dod-24, and F55G11.2. In conclusion, details of OVA activating innate immunity in C. elegans through the IIS pathway are reported here, and the results can be further extrapolated to mammals, which will contribute to a better understanding of the mechanism of the occurrence of food allergic reactions from the perspective of innate immunity.
期刊介绍:
Molecular Immunology publishes original articles, reviews and commentaries on all areas of immunology, with a particular focus on description of cellular, biochemical or genetic mechanisms underlying immunological phenomena. Studies on all model organisms, from invertebrates to humans, are suitable. Examples include, but are not restricted to:
Infection, autoimmunity, transplantation, immunodeficiencies, inflammation and tumor immunology
Mechanisms of induction, regulation and termination of innate and adaptive immunity
Intercellular communication, cooperation and regulation
Intracellular mechanisms of immunity (endocytosis, protein trafficking, pathogen recognition, antigen presentation, etc)
Mechanisms of action of the cells and molecules of the immune system
Structural analysis
Development of the immune system
Comparative immunology and evolution of the immune system
"Omics" studies and bioinformatics
Vaccines, biotechnology and therapeutic manipulation of the immune system (therapeutic antibodies, cytokines, cellular therapies, etc)
Technical developments.