Yanguo Li , Zixing Meng , Chengjiang Fan , Hao Rong , Yang Xi , Qi Liao
{"title":"Identification and multi-omics analysis of essential coding and long non-coding genes in colorectal cancer","authors":"Yanguo Li , Zixing Meng , Chengjiang Fan , Hao Rong , Yang Xi , Qi Liao","doi":"10.1016/j.bbrep.2025.101938","DOIUrl":null,"url":null,"abstract":"<div><div>Essential genes are indispensable for the survival of cancer cell. CRISPR/Cas9-based pooled genetic screens have distinguished the essential genes and their functions in distinct cellular processes. Nevertheless, the landscape of essential genes at the single cell levels and the effect on the tumor microenvironment (TME) remains limited. Here, we identified 396 essential protein-coding genes (ESPs) by integration of 8 genome-wide CRISPR loss-of-function screen datasets of colorectal cancer (CRC) cell lines and single-cell RNA sequencing (scRNA-seq) data of CRC tissues. Then, 29 essential long non-coding genes (ESLs) were predicted using Hypergeometric Test (HT) and Personalized PageRank (PPR) algorithms based on ESPs and co-expressed network constructed from scRNA-seq. CRISPR/Cas9 knockout experiment verified the effect of several ESPs and ESLs on the survival of CRC cell line. Furthermore, multi-omics features of ESPs and ESLs were illustrated by examining their expression patterns and transcription factor (TF) regulatory network at the single cell level, as well as DNA mutation and DNA methylation events at bulk level. Finally, through integrating multiple intracellular regulatory networks with cell-cell communication network (CCN), we elucidated that <em>CD47</em> and <em>MIF</em> are regulated by multiple CRC essential genes, and the anti-cancer drugs sunitinib can interfere the expression of them potentially. Our findings provide a comprehensive asset of CRC ESPs and ESLs, sheding light on the mining of potential therapy targets for CRC.</div></div>","PeriodicalId":8771,"journal":{"name":"Biochemistry and Biophysics Reports","volume":"41 ","pages":"Article 101938"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Biophysics Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405580825000251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Essential genes are indispensable for the survival of cancer cell. CRISPR/Cas9-based pooled genetic screens have distinguished the essential genes and their functions in distinct cellular processes. Nevertheless, the landscape of essential genes at the single cell levels and the effect on the tumor microenvironment (TME) remains limited. Here, we identified 396 essential protein-coding genes (ESPs) by integration of 8 genome-wide CRISPR loss-of-function screen datasets of colorectal cancer (CRC) cell lines and single-cell RNA sequencing (scRNA-seq) data of CRC tissues. Then, 29 essential long non-coding genes (ESLs) were predicted using Hypergeometric Test (HT) and Personalized PageRank (PPR) algorithms based on ESPs and co-expressed network constructed from scRNA-seq. CRISPR/Cas9 knockout experiment verified the effect of several ESPs and ESLs on the survival of CRC cell line. Furthermore, multi-omics features of ESPs and ESLs were illustrated by examining their expression patterns and transcription factor (TF) regulatory network at the single cell level, as well as DNA mutation and DNA methylation events at bulk level. Finally, through integrating multiple intracellular regulatory networks with cell-cell communication network (CCN), we elucidated that CD47 and MIF are regulated by multiple CRC essential genes, and the anti-cancer drugs sunitinib can interfere the expression of them potentially. Our findings provide a comprehensive asset of CRC ESPs and ESLs, sheding light on the mining of potential therapy targets for CRC.
期刊介绍:
Open access, online only, peer-reviewed international journal in the Life Sciences, established in 2014 Biochemistry and Biophysics Reports (BB Reports) publishes original research in all aspects of Biochemistry, Biophysics and related areas like Molecular and Cell Biology. BB Reports welcomes solid though more preliminary, descriptive and small scale results if they have the potential to stimulate and/or contribute to future research, leading to new insights or hypothesis. Primary criteria for acceptance is that the work is original, scientifically and technically sound and provides valuable knowledge to life sciences research. We strongly believe all results deserve to be published and documented for the advancement of science. BB Reports specifically appreciates receiving reports on: Negative results, Replication studies, Reanalysis of previous datasets.