An image simulator of lunar far-side impact flashes captured from the Earth-Moon L2 point

IF 2.8 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Da Song , Hong-bo Cai , Shen Wang , Jing Wang
{"title":"An image simulator of lunar far-side impact flashes captured from the Earth-Moon L2 point","authors":"Da Song ,&nbsp;Hong-bo Cai ,&nbsp;Shen Wang ,&nbsp;Jing Wang","doi":"10.1016/j.asr.2024.12.002","DOIUrl":null,"url":null,"abstract":"<div><div>Impact flashes on the moon are caused by high-speed collisions of celestial bodies with the lunar surface. The study of the impacts is critical for exploring the evolutionary history and formation of the Moon, and for quantifying the risk posed by the impacts to future human activity. Although the impacts have been monitored from the Earth by a few projects in past 20 years, the events occurring on the lunar far side have not been explored systematically so far. We here present an end-to-end image simulator dedicated to detecting and monitoring the impacts from space, which is useful for future mission design. The simulator is designed for modularity and developed in the Python environment, which is mainly composed of four components: the flash temporal radiation, the background emission, the telescope and the detector used to collect and measure the radiation. Briefly speaking, with a set of input parameters, the simulator calculates the flash radiation in the context of the spherical droplet model and the background emission from the lunar surface. The resulting images are then generated by the simulator after considering a series observational effects, including the stray light, transmission of the instrument, point spread function and multiple kinds of noise caused by a CCD/CMOS detector. The simulator is validated by comparing the calculation with the observations taken on the ground. The modular design enables the simulator to be improved and enhanced by including more complex physical models in the future, and to be flexible for other future space missions.</div></div>","PeriodicalId":50850,"journal":{"name":"Advances in Space Research","volume":"75 4","pages":"Pages 4061-4079"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Space Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0273117724012146","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Impact flashes on the moon are caused by high-speed collisions of celestial bodies with the lunar surface. The study of the impacts is critical for exploring the evolutionary history and formation of the Moon, and for quantifying the risk posed by the impacts to future human activity. Although the impacts have been monitored from the Earth by a few projects in past 20 years, the events occurring on the lunar far side have not been explored systematically so far. We here present an end-to-end image simulator dedicated to detecting and monitoring the impacts from space, which is useful for future mission design. The simulator is designed for modularity and developed in the Python environment, which is mainly composed of four components: the flash temporal radiation, the background emission, the telescope and the detector used to collect and measure the radiation. Briefly speaking, with a set of input parameters, the simulator calculates the flash radiation in the context of the spherical droplet model and the background emission from the lunar surface. The resulting images are then generated by the simulator after considering a series observational effects, including the stray light, transmission of the instrument, point spread function and multiple kinds of noise caused by a CCD/CMOS detector. The simulator is validated by comparing the calculation with the observations taken on the ground. The modular design enables the simulator to be improved and enhanced by including more complex physical models in the future, and to be flexible for other future space missions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Space Research
Advances in Space Research 地学天文-地球科学综合
CiteScore
5.20
自引率
11.50%
发文量
800
审稿时长
5.8 months
期刊介绍: The COSPAR publication Advances in Space Research (ASR) is an open journal covering all areas of space research including: space studies of the Earth''s surface, meteorology, climate, the Earth-Moon system, planets and small bodies of the solar system, upper atmospheres, ionospheres and magnetospheres of the Earth and planets including reference atmospheres, space plasmas in the solar system, astrophysics from space, materials sciences in space, fundamental physics in space, space debris, space weather, Earth observations of space phenomena, etc. NB: Please note that manuscripts related to life sciences as related to space are no more accepted for submission to Advances in Space Research. Such manuscripts should now be submitted to the new COSPAR Journal Life Sciences in Space Research (LSSR). All submissions are reviewed by two scientists in the field. COSPAR is an interdisciplinary scientific organization concerned with the progress of space research on an international scale. Operating under the rules of ICSU, COSPAR ignores political considerations and considers all questions solely from the scientific viewpoint.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信