Adaptive output-feedback fault-tolerant control for space manipulator via actor-critic learning

IF 2.8 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Yuwan Yin, Xin Ning, Dongdong Xia
{"title":"Adaptive output-feedback fault-tolerant control for space manipulator via actor-critic learning","authors":"Yuwan Yin,&nbsp;Xin Ning,&nbsp;Dongdong Xia","doi":"10.1016/j.asr.2024.12.026","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, an adaptive output-feedback fault-tolerant control methodology is investigated for the trajectory tracking of space manipulator in the presence of actuator failures, unavailability of the joint velocity, inertia uncertainty and unknown external disturbance. First, to reduce the difficulties in controller design caused by the unmeasured joint velocity of the space manipulator, an effective and simple model transformation scheme based on a first-order filter is proposed to transform the original output feedback system with unknown dynamics into a full-state strict feedback system. Second, by virtue of the combination of a smooth saturation function and the mean value theorem, the negative effects of actuator failures can be effectively addressed. Then, drawing support from the backstepping technique and the reinforcement learning (RL) strategy based on an actor-critic neural network (NN) framework, a novel RL based adaptive control (RLAC) scheme is designed, which not only circumvents the ”explosion of terms” typically arising in backstepping technique, but also incorporates feedback mechanism into the space manipulator control system. Moreover, by utilizing the model transformation and the RLAC scheme, the proposed control method is model-free and insensitive to external disturbance. Finally, the effectiveness superiority of the proposed scheme is verified by numerical simulations.</div></div>","PeriodicalId":50850,"journal":{"name":"Advances in Space Research","volume":"75 4","pages":"Pages 3914-3932"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Space Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0273117724012389","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, an adaptive output-feedback fault-tolerant control methodology is investigated for the trajectory tracking of space manipulator in the presence of actuator failures, unavailability of the joint velocity, inertia uncertainty and unknown external disturbance. First, to reduce the difficulties in controller design caused by the unmeasured joint velocity of the space manipulator, an effective and simple model transformation scheme based on a first-order filter is proposed to transform the original output feedback system with unknown dynamics into a full-state strict feedback system. Second, by virtue of the combination of a smooth saturation function and the mean value theorem, the negative effects of actuator failures can be effectively addressed. Then, drawing support from the backstepping technique and the reinforcement learning (RL) strategy based on an actor-critic neural network (NN) framework, a novel RL based adaptive control (RLAC) scheme is designed, which not only circumvents the ”explosion of terms” typically arising in backstepping technique, but also incorporates feedback mechanism into the space manipulator control system. Moreover, by utilizing the model transformation and the RLAC scheme, the proposed control method is model-free and insensitive to external disturbance. Finally, the effectiveness superiority of the proposed scheme is verified by numerical simulations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Space Research
Advances in Space Research 地学天文-地球科学综合
CiteScore
5.20
自引率
11.50%
发文量
800
审稿时长
5.8 months
期刊介绍: The COSPAR publication Advances in Space Research (ASR) is an open journal covering all areas of space research including: space studies of the Earth''s surface, meteorology, climate, the Earth-Moon system, planets and small bodies of the solar system, upper atmospheres, ionospheres and magnetospheres of the Earth and planets including reference atmospheres, space plasmas in the solar system, astrophysics from space, materials sciences in space, fundamental physics in space, space debris, space weather, Earth observations of space phenomena, etc. NB: Please note that manuscripts related to life sciences as related to space are no more accepted for submission to Advances in Space Research. Such manuscripts should now be submitted to the new COSPAR Journal Life Sciences in Space Research (LSSR). All submissions are reviewed by two scientists in the field. COSPAR is an interdisciplinary scientific organization concerned with the progress of space research on an international scale. Operating under the rules of ICSU, COSPAR ignores political considerations and considers all questions solely from the scientific viewpoint.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信