Cross-scale prediction for the Laurentian Great Lakes

IF 3.1 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Y. Joseph Zhang , Joshua Anderson , Chin H. Wu , Dmitry Beletsky , Yuli Liu , Wei Huang , Eric J. Anderson , Saeed Moghimi , Edward Myers
{"title":"Cross-scale prediction for the Laurentian Great Lakes","authors":"Y. Joseph Zhang ,&nbsp;Joshua Anderson ,&nbsp;Chin H. Wu ,&nbsp;Dmitry Beletsky ,&nbsp;Yuli Liu ,&nbsp;Wei Huang ,&nbsp;Eric J. Anderson ,&nbsp;Saeed Moghimi ,&nbsp;Edward Myers","doi":"10.1016/j.ocemod.2025.102512","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, for the first time, all five Great Lakes are simulated using a 3D baroclinic model using a single, seamless unstructured mesh without nesting, including adjacent flood plains and watershed inflows to better connect the hydrodynamic model to the hydrologic model. The hydraulic controls at Sault St Marie and Niagara Falls are simulated using an internal flow boundary approach with the observed flow. The model is shown to exhibit good skills for total water level (TWL) and temperature, with RMSE of 9.5 cm for TWL and ∼1.6 °C for surface temperature and temperature profiles from a 60–day simulation. Sensitivity results reveal the importance of hydrologic forcing even for this short-term simulation. Results from a 210-day simulation indicate that the model is capable of capturing major lake-wide circulation patterns discussed in previous studies and providing further details in those patterns. The new model can potentially serve as a base to unify Great Lakes modeling while simultaneously providing flexibility for site specific studies in any areas of interest.</div></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"194 ","pages":"Article 102512"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Modelling","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1463500325000150","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, for the first time, all five Great Lakes are simulated using a 3D baroclinic model using a single, seamless unstructured mesh without nesting, including adjacent flood plains and watershed inflows to better connect the hydrodynamic model to the hydrologic model. The hydraulic controls at Sault St Marie and Niagara Falls are simulated using an internal flow boundary approach with the observed flow. The model is shown to exhibit good skills for total water level (TWL) and temperature, with RMSE of 9.5 cm for TWL and ∼1.6 °C for surface temperature and temperature profiles from a 60–day simulation. Sensitivity results reveal the importance of hydrologic forcing even for this short-term simulation. Results from a 210-day simulation indicate that the model is capable of capturing major lake-wide circulation patterns discussed in previous studies and providing further details in those patterns. The new model can potentially serve as a base to unify Great Lakes modeling while simultaneously providing flexibility for site specific studies in any areas of interest.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ocean Modelling
Ocean Modelling 地学-海洋学
CiteScore
5.50
自引率
9.40%
发文量
86
审稿时长
19.6 weeks
期刊介绍: The main objective of Ocean Modelling is to provide rapid communication between those interested in ocean modelling, whether through direct observation, or through analytical, numerical or laboratory models, and including interactions between physical and biogeochemical or biological phenomena. Because of the intimate links between ocean and atmosphere, involvement of scientists interested in influences of either medium on the other is welcome. The journal has a wide scope and includes ocean-atmosphere interaction in various forms as well as pure ocean results. In addition to primary peer-reviewed papers, the journal provides review papers, preliminary communications, and discussions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信