Phosphatidylserine decorated inhalable immunostimulants to eradicate pulmonary metastasis through alveolar macrophage polarization and phagocytosis restoration in situ

IF 13.2 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiayun Chen , Qianqian Liu , Baixue Yu , Yi Cen , Yibin Liu , Youzhi Tang , Ning Guo , Tao Wang , Shiying Li
{"title":"Phosphatidylserine decorated inhalable immunostimulants to eradicate pulmonary metastasis through alveolar macrophage polarization and phagocytosis restoration in situ","authors":"Xiayun Chen ,&nbsp;Qianqian Liu ,&nbsp;Baixue Yu ,&nbsp;Yi Cen ,&nbsp;Yibin Liu ,&nbsp;Youzhi Tang ,&nbsp;Ning Guo ,&nbsp;Tao Wang ,&nbsp;Shiying Li","doi":"10.1016/j.nantod.2025.102667","DOIUrl":null,"url":null,"abstract":"<div><div>Pulmonary metastasis is frequently observed across various malignant tumors, contributing to a considerable mortality and featuring with a low immune response rate. In this work, a pathological analysis of the pulmonary metastasis indicates that alveolar macrophages (AMs) are prone to be polarized into immunosuppressive M2 phenotype, and the drug screening confirms that TLR7/8 agonists (R848) and SHP2 inhibitor (SHP099) would polarize AMs into immune-promoting M1 phenotype and restore their phagocytic elimination behavior. Based on these discovery, Inhalable and Alveolar Macrophage targeted IMmunostimulants (designated as I-AM-IMs) are fabricated by using phosphatidylserine decorated liposomes to co-deliver R848 and SHP099. Nebulization inhalation of I-AM-IMs enables the passive and active targeted drug delivery for AMs resided in lower respiratory tract, promoting AMs polarization and phagocytosis restoration <em>in situ</em>. Meanwhile, phenotype reprogramming of AMs could direct the phagocytic elimination of pulmonary metastatic tumor cells, trigger the release of cytotoxic cytokines and activate CD8 T cell specific anti-tumor immunity. <em>In vitro</em> and <em>in vivo</em> studies demonstrate the superior immunotherapeutic effects of I-AM-IMs to eradicate pulmonary metastasis, which might provide a versatile and effective strategy for localized pulmonary metastasis immunotherapy.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"61 ","pages":"Article 102667"},"PeriodicalIF":13.2000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013225000398","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Pulmonary metastasis is frequently observed across various malignant tumors, contributing to a considerable mortality and featuring with a low immune response rate. In this work, a pathological analysis of the pulmonary metastasis indicates that alveolar macrophages (AMs) are prone to be polarized into immunosuppressive M2 phenotype, and the drug screening confirms that TLR7/8 agonists (R848) and SHP2 inhibitor (SHP099) would polarize AMs into immune-promoting M1 phenotype and restore their phagocytic elimination behavior. Based on these discovery, Inhalable and Alveolar Macrophage targeted IMmunostimulants (designated as I-AM-IMs) are fabricated by using phosphatidylserine decorated liposomes to co-deliver R848 and SHP099. Nebulization inhalation of I-AM-IMs enables the passive and active targeted drug delivery for AMs resided in lower respiratory tract, promoting AMs polarization and phagocytosis restoration in situ. Meanwhile, phenotype reprogramming of AMs could direct the phagocytic elimination of pulmonary metastatic tumor cells, trigger the release of cytotoxic cytokines and activate CD8 T cell specific anti-tumor immunity. In vitro and in vivo studies demonstrate the superior immunotherapeutic effects of I-AM-IMs to eradicate pulmonary metastasis, which might provide a versatile and effective strategy for localized pulmonary metastasis immunotherapy.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Today
Nano Today 工程技术-材料科学:综合
CiteScore
21.50
自引率
3.40%
发文量
305
审稿时长
40 days
期刊介绍: Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信