Addendum to: “Dynamics of incompressible fluids with incompatible distortion rates” [International Journal of Engineering Science 168C (2021)]

IF 5.7 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Roger Fosdick , Eliot Fried
{"title":"Addendum to: “Dynamics of incompressible fluids with incompatible distortion rates” [International Journal of Engineering Science 168C (2021)]","authors":"Roger Fosdick ,&nbsp;Eliot Fried","doi":"10.1016/j.ijengsci.2024.104162","DOIUrl":null,"url":null,"abstract":"<div><div>Fosdick and Fried (2021) proposed a generalized Navier–Stokes theory for studying the dynamics of incompressible fluids which, under certain flow conditions, may support incompatible distortion rates. Herein, we complete the development of a comprehensive boundary condition, at a fixed wall, for the incompatibility tensor <span><math><mi>G</mi></math></span> of that theory; we clarify the physical conditions which express the presence of incompatibility at a wall and, thus, its transmission into the adjacent fluid. The final condition incorporates a constitutively prescribed threshold <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> for the magnitude of the shear stress vector <span><math><mi>s</mi></math></span> at the wall. For <span><math><mrow><mrow><mo>|</mo><mi>s</mi><mo>|</mo></mrow><mo>&lt;</mo><msub><mrow><mi>τ</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span>, <span><math><mrow><mi>G</mi><mo>=</mo><mi>O</mi></mrow></math></span>. For <span><math><mrow><mrow><mo>|</mo><mi>s</mi><mo>|</mo></mrow><mo>≥</mo><msub><mrow><mi>τ</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span>, <span><math><mrow><mi>G</mi><mo>=</mo><mi>γ</mi><mrow><mo>(</mo><mi>1</mi><mo>−</mo><mi>t</mi><mo>⊗</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mi>t</mi></mrow></msub><mi>n</mi><mo>⊗</mo><mi>t</mi></mrow></math></span>, where <span><math><mi>γ</mi></math></span> is a material constant, <span><math><mi>t</mi></math></span> and <span><math><mi>n</mi></math></span> are appropriately defined orthonormal tangent vectors to the wall and <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mi>t</mi></mrow></msub></math></span> is a possibly non-zero component of <span><math><mi>G</mi></math></span> at the wall.</div></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"209 ","pages":"Article 104162"},"PeriodicalIF":5.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020722524001460","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Fosdick and Fried (2021) proposed a generalized Navier–Stokes theory for studying the dynamics of incompressible fluids which, under certain flow conditions, may support incompatible distortion rates. Herein, we complete the development of a comprehensive boundary condition, at a fixed wall, for the incompatibility tensor G of that theory; we clarify the physical conditions which express the presence of incompatibility at a wall and, thus, its transmission into the adjacent fluid. The final condition incorporates a constitutively prescribed threshold τc for the magnitude of the shear stress vector s at the wall. For |s|<τc, G=O. For |s|τc, G=γ(1tt)+Gntnt, where γ is a material constant, t and n are appropriately defined orthonormal tangent vectors to the wall and Gnt is a possibly non-zero component of G at the wall.
附录:“具有不相容畸变率的不可压缩流体动力学”[国际工程科学学报168C (2021)]
Fosdick和Fried(2021)提出了一种广义的Navier-Stokes理论,用于研究不可压缩流体的动力学,该理论在某些流动条件下可能支持不相容畸变率。在此,我们完成了该理论的不相容张量G在固定壁上的综合边界条件的发展;我们澄清了表示在壁上存在不相容性的物理条件,从而将其传递到邻近的流体中。最后的条件包括一个本构规定的阈值τc的剪切应力矢量的大小在墙。对于|s|<;τc, G= 0。对于|s|≥τc, G=γ(1−t⊗t)+Gntn⊗t,其中γ为材料常数,t和n是适当定义的壁的正交切向量,Gnt可能是壁处G的非零分量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Engineering Science
International Journal of Engineering Science 工程技术-工程:综合
CiteScore
11.80
自引率
16.70%
发文量
86
审稿时长
45 days
期刊介绍: The International Journal of Engineering Science is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering sciences. While it encourages a broad spectrum of contribution in the engineering sciences, its core interest lies in issues concerning material modeling and response. Articles of interdisciplinary nature are particularly welcome. The primary goal of the new editors is to maintain high quality of publications. There will be a commitment to expediting the time taken for the publication of the papers. The articles that are sent for reviews will have names of the authors deleted with a view towards enhancing the objectivity and fairness of the review process. Articles that are devoted to the purely mathematical aspects without a discussion of the physical implications of the results or the consideration of specific examples are discouraged. Articles concerning material science should not be limited merely to a description and recording of observations but should contain theoretical or quantitative discussion of the results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信