Explainable deep learning hybrid modeling framework for total suspended particles concentrations prediction

IF 4.2 2区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Sujan Ghimire , Ravinesh C. Deo , Ningbo Jiang , A.A. Masrur Ahmed , Salvin S. Prasad , David Casillas-Pérez , Sancho Salcedo-Sanz , Zaher Mundher Yaseen
{"title":"Explainable deep learning hybrid modeling framework for total suspended particles concentrations prediction","authors":"Sujan Ghimire ,&nbsp;Ravinesh C. Deo ,&nbsp;Ningbo Jiang ,&nbsp;A.A. Masrur Ahmed ,&nbsp;Salvin S. Prasad ,&nbsp;David Casillas-Pérez ,&nbsp;Sancho Salcedo-Sanz ,&nbsp;Zaher Mundher Yaseen","doi":"10.1016/j.atmosenv.2025.121079","DOIUrl":null,"url":null,"abstract":"<div><div>Total Suspended Particles (<span><math><mrow><mi>T</mi><mi>S</mi><mi>P</mi></mrow></math></span>) is an important indicator of air quality, yet traditional prediction models lack comprehensive consideration of spatio-temporal interactions of different meteorological and air pollution phenomena. To address these limitations, this study introduces an explainable (X) deep hybrid (H) network, integrating Convolutional Neural Networks (CNN) and Bidirectional Gated Recurrent Units (BGRU), for hourly <span><math><mrow><mi>T</mi><mi>S</mi><mi>P</mi></mrow></math></span> concentration prediction. The model was trained and evaluated using meteorological and air quality data from Canon Hill, Australia. By combining CNN’s spatial feature extraction capabilities with BGRU’s temporal dependencies, the model effectively captures complex spatial–temporal patterns in the data. The X-H-CBGRU model outperforms fifteen competing benchmark models such as deep neural network, extreme learning machine, multilayer perceptron, support vector regression, random forest regression, light gradient boosting, gradient boosting regression, long short-term memory network, as well as their hybrid CNN counterparts in terms of the accuracy evidenced by a lower Root Mean Square Error (<span><math><mrow><mi>R</mi><mi>M</mi><mi>S</mi><mi>E</mi></mrow></math></span> <span><math><mrow><mo>≈</mo><mspace></mspace><mn>6</mn><mo>.</mo><mn>302</mn><mspace></mspace><mi>μ</mi><msup><mrow><mi>g/m</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span>) and higher Correlation Coefficient (<span><math><mi>r</mi></math></span> <span><math><mrow><mo>≈</mo><mspace></mspace><mn>0</mn><mo>.</mo><mn>91</mn></mrow></math></span>) compared to other models. Moreover, the model demonstrates strong probabilistic performance with a high Prediction Interval Coverage Probability (<span><math><mrow><mi>P</mi><mi>I</mi><mi>C</mi><mi>P</mi></mrow></math></span> <span><math><mrow><mo>≈</mo><mn>0</mn><mo>.</mo><mn>98</mn></mrow></math></span>) and low Prediction Interval Normalized Average Width (<span><math><mrow><mi>P</mi><mi>I</mi><mi>N</mi><mi>A</mi><mi>W</mi></mrow></math></span> <span><math><mrow><mo>≈</mo><mspace></mspace><mn>0</mn><mo>.</mo><mn>18</mn></mrow></math></span>), indicating its reliable prediction intervals. To enhance model interpretability, Shapley Additive Explanations (SHAP) and Local Interpretable Model-Agnostic Explanations (LIME) methods were employed, revealing <span><math><mrow><mi>P</mi><msub><mrow><mi>M</mi></mrow><mrow><mn>10</mn></mrow></msub></mrow></math></span> concentration, relative humidity, air temperature, and wind speed as key predictors of <span><math><mrow><mi>T</mi><mi>S</mi><mi>P</mi></mrow></math></span> concentrations. The Diebold–Mariano statistical test further confirmed the model’s superior performance. This study contributes towards advancing <span><math><mrow><mi>T</mi><mi>S</mi><mi>P</mi></mrow></math></span> prediction by providing a robust, accurate, and interpretable model which has particular importance in locations such as mining regions. The X-H-CBGRU model holds potential for improving public health protection and informing air pollution mitigation strategies.</div></div>","PeriodicalId":250,"journal":{"name":"Atmospheric Environment","volume":"347 ","pages":"Article 121079"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1352231025000548","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Total Suspended Particles (TSP) is an important indicator of air quality, yet traditional prediction models lack comprehensive consideration of spatio-temporal interactions of different meteorological and air pollution phenomena. To address these limitations, this study introduces an explainable (X) deep hybrid (H) network, integrating Convolutional Neural Networks (CNN) and Bidirectional Gated Recurrent Units (BGRU), for hourly TSP concentration prediction. The model was trained and evaluated using meteorological and air quality data from Canon Hill, Australia. By combining CNN’s spatial feature extraction capabilities with BGRU’s temporal dependencies, the model effectively captures complex spatial–temporal patterns in the data. The X-H-CBGRU model outperforms fifteen competing benchmark models such as deep neural network, extreme learning machine, multilayer perceptron, support vector regression, random forest regression, light gradient boosting, gradient boosting regression, long short-term memory network, as well as their hybrid CNN counterparts in terms of the accuracy evidenced by a lower Root Mean Square Error (RMSE 6.302μg/m3) and higher Correlation Coefficient (r 0.91) compared to other models. Moreover, the model demonstrates strong probabilistic performance with a high Prediction Interval Coverage Probability (PICP 0.98) and low Prediction Interval Normalized Average Width (PINAW 0.18), indicating its reliable prediction intervals. To enhance model interpretability, Shapley Additive Explanations (SHAP) and Local Interpretable Model-Agnostic Explanations (LIME) methods were employed, revealing PM10 concentration, relative humidity, air temperature, and wind speed as key predictors of TSP concentrations. The Diebold–Mariano statistical test further confirmed the model’s superior performance. This study contributes towards advancing TSP prediction by providing a robust, accurate, and interpretable model which has particular importance in locations such as mining regions. The X-H-CBGRU model holds potential for improving public health protection and informing air pollution mitigation strategies.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric Environment
Atmospheric Environment 环境科学-环境科学
CiteScore
9.40
自引率
8.00%
发文量
458
审稿时长
53 days
期刊介绍: Atmospheric Environment has an open access mirror journal Atmospheric Environment: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Atmospheric Environment is the international journal for scientists in different disciplines related to atmospheric composition and its impacts. The journal publishes scientific articles with atmospheric relevance of emissions and depositions of gaseous and particulate compounds, chemical processes and physical effects in the atmosphere, as well as impacts of the changing atmospheric composition on human health, air quality, climate change, and ecosystems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信