Design of organosilica membranes to optimize reverse osmosis for the concentration of alcohols

IF 9 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Norihiro Moriyama , Shun-ichi Shiozaki , Sakura Hatashita , Hiroki Nagasawa , Tatsuya Iwashina , Kazuki Yamamoto , Takahiro Gunji , Masakoto Kanezashi , Toshinori Tsuru
{"title":"Design of organosilica membranes to optimize reverse osmosis for the concentration of alcohols","authors":"Norihiro Moriyama ,&nbsp;Shun-ichi Shiozaki ,&nbsp;Sakura Hatashita ,&nbsp;Hiroki Nagasawa ,&nbsp;Tatsuya Iwashina ,&nbsp;Kazuki Yamamoto ,&nbsp;Takahiro Gunji ,&nbsp;Masakoto Kanezashi ,&nbsp;Toshinori Tsuru","doi":"10.1016/j.memsci.2025.123819","DOIUrl":null,"url":null,"abstract":"<div><div>Short-chain alcohols like methanol, ethanol, and isopropyl alcohol are essential in various industries but require energy-intensive distillation for concentration and purification. Reverse osmosis (RO) offers an energy-efficient alternative, yet high osmotic pressures demand robust membranes. This study optimized robust organosilica membranes for alcohol concentration via RO by exploring different intermediate and separation layers. First, methylene-bridged organosilica membranes were prepared with silica-zirconia and organosilica intermediate layers. The use of an organosilica intermediate layer exhibited a water permeance, nearly three times higher than that with a silica-zirconia intermediate layer, without compromising alcohol rejection. Further investigation into separation layers with varying organic linking units in organosilica structure— methylene (-CH₂-), ethylene (-CH₂CH₂-), and propylene (-CH₂CH₂CH₂-)—revealed that membranes with fewer carbon atoms showed superior throughput with superior selectivity due to reduced preferential alcohol adsorption. These findings indicate that organosilica membranes with an organosilica intermediate layer and a methylene-bridged organosilica separation layer are promising for energy-efficient alcohol concentration.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"721 ","pages":"Article 123819"},"PeriodicalIF":9.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738825001322","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Short-chain alcohols like methanol, ethanol, and isopropyl alcohol are essential in various industries but require energy-intensive distillation for concentration and purification. Reverse osmosis (RO) offers an energy-efficient alternative, yet high osmotic pressures demand robust membranes. This study optimized robust organosilica membranes for alcohol concentration via RO by exploring different intermediate and separation layers. First, methylene-bridged organosilica membranes were prepared with silica-zirconia and organosilica intermediate layers. The use of an organosilica intermediate layer exhibited a water permeance, nearly three times higher than that with a silica-zirconia intermediate layer, without compromising alcohol rejection. Further investigation into separation layers with varying organic linking units in organosilica structure— methylene (-CH₂-), ethylene (-CH₂CH₂-), and propylene (-CH₂CH₂CH₂-)—revealed that membranes with fewer carbon atoms showed superior throughput with superior selectivity due to reduced preferential alcohol adsorption. These findings indicate that organosilica membranes with an organosilica intermediate layer and a methylene-bridged organosilica separation layer are promising for energy-efficient alcohol concentration.

Abstract Image

有机硅膜的设计,以优化反渗透酒精浓度
短链醇,如甲醇、乙醇和异丙醇,在各种工业中都是必不可少的,但需要能量密集的蒸馏来浓缩和净化。反渗透(RO)提供了一种节能的替代方案,但高渗透压需要坚固的膜。本研究通过探索不同的中间层和分离层,优化了用于反渗透乙醇浓度的坚固有机硅膜。首先,用二氧化硅-氧化锆和有机二氧化硅中间层制备了亚甲基桥接有机二氧化硅膜。有机二氧化硅中间层的透水性几乎是二氧化硅-氧化锆中间层的三倍,而且不影响酒精的吸收率。对有机二氧化硅结构中不同有机连接单元的分离层——亚甲基(-CH₂-)、乙烯(-CH₂CH₂-)和丙烯(-CH₂CH₂-)的进一步研究表明,由于减少了醇的优先吸附,碳原子较少的膜表现出更高的通量和更高的选择性。这些发现表明,具有有机二氧化硅中间层和亚甲基桥接有机二氧化硅分离层的有机二氧化硅膜是一种很有前途的高效醇浓缩膜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信