Nitrogen-Doped Porous Biochar via Azotobacter chroococcum-Based Nitrogen Fixation for Improved Volatile Organic Compound Adsorption

IF 7.4 Q1 ENGINEERING, ENVIRONMENTAL
Fan Yao, Xiaohong Wang, Guangyi Zhao, Weixiao Peng, Wenfu Zhu, Yuqin Wang, Yujun Jiao, Haomin Huang* and Daiqi Ye, 
{"title":"Nitrogen-Doped Porous Biochar via Azotobacter chroococcum-Based Nitrogen Fixation for Improved Volatile Organic Compound Adsorption","authors":"Fan Yao,&nbsp;Xiaohong Wang,&nbsp;Guangyi Zhao,&nbsp;Weixiao Peng,&nbsp;Wenfu Zhu,&nbsp;Yuqin Wang,&nbsp;Yujun Jiao,&nbsp;Haomin Huang* and Daiqi Ye,&nbsp;","doi":"10.1021/acsestengg.4c0054110.1021/acsestengg.4c00541","DOIUrl":null,"url":null,"abstract":"<p >Nitrogen doping has been widely used to prepare porous carbon materials for the adsorption of volatile organic compounds (VOCs). However, in the current research, the nitrogen doping process is limited by the raw materials, and it is difficult to achieve simultaneous and precise synergistic regulation of the pore structure, doping quantity, and doping morphology. Inspired by the carbon–nitrogen cycle in nature, the symbiotic community of nitrogen-fixing microorganisms is an important functional group to regulate the elemental cycle. In this study, a novel biological nitrogen fixation incorporation doped method was proposed, i.e., <i>Azotobacter chroococcum</i> (<i>A. chroococcum</i>) is cultivated on the surface of the biochar and catalyzes the conversion of atmospheric nitrogen (N<sub>2</sub>) to fixed nitrogen (NH<sup>4+</sup>) by nitrogen-fixing enzymes in the body of <i>A. chroococcum</i>, which leads to the formation of bionitrogen and thereby increases the total nitrogen content (0.99%) in the biochar material. The results showed that the content of pyrrole nitrogen in the material was 73.3% and that it possessed a larger specific surface area (1338.21 m<sup>2</sup>/g) and mesopore (0.499 cm<sup>3</sup>/g), which greatly improved its adsorption capacity (182.88 mg/g) for ethyl acetate. In addition, in order to elucidate the microscopic adsorption mechanism for enhanced adsorption performance, systematic theoretical calculations of adsorption amount, adsorption energy, and adsorption isotherm were carried out by molecular simulation. This study innovatively achieved green and safe regulation of biomass precursors by nitrogen-fixing bacteria without increasing the nitrogen source and provided a theoretical basis and technical methods to improve the quality and efficiency of the VOC adsorption materials.</p>","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":"5 2","pages":"402–413 402–413"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T engineering","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestengg.4c00541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nitrogen doping has been widely used to prepare porous carbon materials for the adsorption of volatile organic compounds (VOCs). However, in the current research, the nitrogen doping process is limited by the raw materials, and it is difficult to achieve simultaneous and precise synergistic regulation of the pore structure, doping quantity, and doping morphology. Inspired by the carbon–nitrogen cycle in nature, the symbiotic community of nitrogen-fixing microorganisms is an important functional group to regulate the elemental cycle. In this study, a novel biological nitrogen fixation incorporation doped method was proposed, i.e., Azotobacter chroococcum (A. chroococcum) is cultivated on the surface of the biochar and catalyzes the conversion of atmospheric nitrogen (N2) to fixed nitrogen (NH4+) by nitrogen-fixing enzymes in the body of A. chroococcum, which leads to the formation of bionitrogen and thereby increases the total nitrogen content (0.99%) in the biochar material. The results showed that the content of pyrrole nitrogen in the material was 73.3% and that it possessed a larger specific surface area (1338.21 m2/g) and mesopore (0.499 cm3/g), which greatly improved its adsorption capacity (182.88 mg/g) for ethyl acetate. In addition, in order to elucidate the microscopic adsorption mechanism for enhanced adsorption performance, systematic theoretical calculations of adsorption amount, adsorption energy, and adsorption isotherm were carried out by molecular simulation. This study innovatively achieved green and safe regulation of biomass precursors by nitrogen-fixing bacteria without increasing the nitrogen source and provided a theoretical basis and technical methods to improve the quality and efficiency of the VOC adsorption materials.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS ES&T engineering
ACS ES&T engineering ENGINEERING, ENVIRONMENTAL-
CiteScore
8.50
自引率
0.00%
发文量
0
期刊介绍: ACS ES&T Engineering publishes impactful research and review articles across all realms of environmental technology and engineering, employing a rigorous peer-review process. As a specialized journal, it aims to provide an international platform for research and innovation, inviting contributions on materials technologies, processes, data analytics, and engineering systems that can effectively manage, protect, and remediate air, water, and soil quality, as well as treat wastes and recover resources. The journal encourages research that supports informed decision-making within complex engineered systems and is grounded in mechanistic science and analytics, describing intricate environmental engineering systems. It considers papers presenting novel advancements, spanning from laboratory discovery to field-based application. However, case or demonstration studies lacking significant scientific advancements and technological innovations are not within its scope. Contributions containing experimental and/or theoretical methods, rooted in engineering principles and integrated with knowledge from other disciplines, are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信