{"title":"Machine Learning Assisted Image Analysis for Microalgae Prediction","authors":"Karthikeyan Meenatchi\r\nSundaram, Sikhakolli Sravan Kumar, Anuj Deshpande, Sunil Chinnadurai and Karthik Rajendran*, ","doi":"10.1021/acsestengg.4c0059810.1021/acsestengg.4c00598","DOIUrl":null,"url":null,"abstract":"<p >Microalgae-based wastewater treatment has resulted in a paradigm shift toward nutrient removal and simultaneous resource recovery. However, traditionally used microalgal biomass quantification methods are time-consuming and costly, limiting their large-scale use. The aim of this study is to develop a simple and cost-effective image-based method for microalgae quantification, replacing cumbersome traditional techniques. In this study, preprocessed microalgae images and associated optical density data were utilized as inputs. Three feature extraction methods were compared alongside eight machine learning (ML) models, including linear regression (LR), random forest (RF), AdaBoost, gradient boosting (GB), and various neural networks. Among these algorithms, LR with principal component analysis achieved an <i>R</i><sup>2</sup> value of 0.97 with the lowest error of 0.039. Combining image analysis and ML removes the need for expensive equipment in microalgae quantification. Sensitivity analysis was performed by varying the train–test splitting ratio. Training time was included in the evaluation, and accounting for energy consumption in the study leads to the achievement of high model performance and energy-efficient ML model utilization.</p>","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":"5 2","pages":"541–550 541–550"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T engineering","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestengg.4c00598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microalgae-based wastewater treatment has resulted in a paradigm shift toward nutrient removal and simultaneous resource recovery. However, traditionally used microalgal biomass quantification methods are time-consuming and costly, limiting their large-scale use. The aim of this study is to develop a simple and cost-effective image-based method for microalgae quantification, replacing cumbersome traditional techniques. In this study, preprocessed microalgae images and associated optical density data were utilized as inputs. Three feature extraction methods were compared alongside eight machine learning (ML) models, including linear regression (LR), random forest (RF), AdaBoost, gradient boosting (GB), and various neural networks. Among these algorithms, LR with principal component analysis achieved an R2 value of 0.97 with the lowest error of 0.039. Combining image analysis and ML removes the need for expensive equipment in microalgae quantification. Sensitivity analysis was performed by varying the train–test splitting ratio. Training time was included in the evaluation, and accounting for energy consumption in the study leads to the achievement of high model performance and energy-efficient ML model utilization.
期刊介绍:
ACS ES&T Engineering publishes impactful research and review articles across all realms of environmental technology and engineering, employing a rigorous peer-review process. As a specialized journal, it aims to provide an international platform for research and innovation, inviting contributions on materials technologies, processes, data analytics, and engineering systems that can effectively manage, protect, and remediate air, water, and soil quality, as well as treat wastes and recover resources.
The journal encourages research that supports informed decision-making within complex engineered systems and is grounded in mechanistic science and analytics, describing intricate environmental engineering systems. It considers papers presenting novel advancements, spanning from laboratory discovery to field-based application. However, case or demonstration studies lacking significant scientific advancements and technological innovations are not within its scope.
Contributions containing experimental and/or theoretical methods, rooted in engineering principles and integrated with knowledge from other disciplines, are welcomed.