Chuanye Zhou, Xiang Ji, Hongrui Ding*, Xiao Ge, Yanyan Li, Fengyin Chen, Changqiu Wang, Yan Li and Anhuai Lu*,
{"title":"Efficient and Stable Cr(VI) Remediation Using Enhanced Electrokinetic Method with a Natural Magnetite/Pyrrhotite Composite","authors":"Chuanye Zhou, Xiang Ji, Hongrui Ding*, Xiao Ge, Yanyan Li, Fengyin Chen, Changqiu Wang, Yan Li and Anhuai Lu*, ","doi":"10.1021/acsestengg.4c0043410.1021/acsestengg.4c00434","DOIUrl":null,"url":null,"abstract":"<p >Cr(VI) contamination is a significant environmental issue, whereas existing remediation technologies, whether physical, chemical, or biological, have many limitations, such as extensive engineering work, high energy consumption, secondary pollution, and incomplete treatment. Here, we report a Cr(VI) remediation method that integrates a natural magnetite/pyrrhotite composite (NMPC) with electrokinetic processes to enhance the remediation efficiency and stability, in which the electron-donating ability of NMPC was utilized to boost the reduction and immobilization of Cr(VI). The XRD analysis shows that NMPC is composed of magnetite and pyrrhotite. A highest 100% Cr(VI) removal efficiency and a TCr removal efficiency over 95% are achieved when treating Cr(VI) contaminants. The remediation stability analysis shows that the redissolution ratio of Cr(VI) in the NMPC-enhanced treatment decreased by more than 62%, indicating that the Cr-containing products were stable and resistant to releasing Cr. Furthermore, the Cr-containing products are analyzed by SEM-EDS, Raman, XRD, and XPS. The results show that the distribution of Cr and Fe is highly correlated and Cr is immobilized in the mineral phase. These results demonstrate that NMPC enhances the removal of Cr(VI) and promotes the immobilization of Cr, thus reducing the risk of Cr reoxidation and contributing to a more durable remediation effect.</p>","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":"5 2","pages":"358–365 358–365"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T engineering","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestengg.4c00434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cr(VI) contamination is a significant environmental issue, whereas existing remediation technologies, whether physical, chemical, or biological, have many limitations, such as extensive engineering work, high energy consumption, secondary pollution, and incomplete treatment. Here, we report a Cr(VI) remediation method that integrates a natural magnetite/pyrrhotite composite (NMPC) with electrokinetic processes to enhance the remediation efficiency and stability, in which the electron-donating ability of NMPC was utilized to boost the reduction and immobilization of Cr(VI). The XRD analysis shows that NMPC is composed of magnetite and pyrrhotite. A highest 100% Cr(VI) removal efficiency and a TCr removal efficiency over 95% are achieved when treating Cr(VI) contaminants. The remediation stability analysis shows that the redissolution ratio of Cr(VI) in the NMPC-enhanced treatment decreased by more than 62%, indicating that the Cr-containing products were stable and resistant to releasing Cr. Furthermore, the Cr-containing products are analyzed by SEM-EDS, Raman, XRD, and XPS. The results show that the distribution of Cr and Fe is highly correlated and Cr is immobilized in the mineral phase. These results demonstrate that NMPC enhances the removal of Cr(VI) and promotes the immobilization of Cr, thus reducing the risk of Cr reoxidation and contributing to a more durable remediation effect.
期刊介绍:
ACS ES&T Engineering publishes impactful research and review articles across all realms of environmental technology and engineering, employing a rigorous peer-review process. As a specialized journal, it aims to provide an international platform for research and innovation, inviting contributions on materials technologies, processes, data analytics, and engineering systems that can effectively manage, protect, and remediate air, water, and soil quality, as well as treat wastes and recover resources.
The journal encourages research that supports informed decision-making within complex engineered systems and is grounded in mechanistic science and analytics, describing intricate environmental engineering systems. It considers papers presenting novel advancements, spanning from laboratory discovery to field-based application. However, case or demonstration studies lacking significant scientific advancements and technological innovations are not within its scope.
Contributions containing experimental and/or theoretical methods, rooted in engineering principles and integrated with knowledge from other disciplines, are welcomed.