The second optical metasurface revolution: moving from science to technology

Mark L. Brongersma, Ragip A. Pala, Hatice Altug, Federico Capasso, Wei Ting Chen, Arka Majumdar, Harry A. Atwater
{"title":"The second optical metasurface revolution: moving from science to technology","authors":"Mark L. Brongersma, Ragip A. Pala, Hatice Altug, Federico Capasso, Wei Ting Chen, Arka Majumdar, Harry A. Atwater","doi":"10.1038/s44287-024-00136-4","DOIUrl":null,"url":null,"abstract":"Optical metasurfaces are judiciously nanostructured thin films capable of manipulating the flow of light in a myriad of new ways. During the past two decades, we have witnessed a true revolution in the basic science that underlies their operation. As a result, these powerful optical elements can now deliver never-seen-before optical functions and transformed the way we think about light–matter interaction at the nanoscale. They also offer a favourable size, weight, power and cost metric compared to bulky optical elements such as lenses and prisms based on polished pieces of glass or moulded plastics. These valuable traits are especially relevant for use in many emerging applications, including wearable displays and sensors, autonomous navigation (robotics, automotive and aerospace), computational imaging, solar energy harvesting and radiative cooling. With the advent of advanced software and high-volume manufacturing processes, the promise of metasurfaces is becoming a practical reality and has already generated tremendous interest from industry. This Review discusses the rapid, recent advances towards transitioning metasurface science into real technologies, propelling the second metasurface revolution. Metasurface optics offer a very favourable size, weight, power and cost metric compared to bulky optical elements based on polished pieces of glass or moulded plastics, and these valuable traits are now propelling their use in many areas of technology.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":"2 2","pages":"125-143"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44287-024-00136-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Optical metasurfaces are judiciously nanostructured thin films capable of manipulating the flow of light in a myriad of new ways. During the past two decades, we have witnessed a true revolution in the basic science that underlies their operation. As a result, these powerful optical elements can now deliver never-seen-before optical functions and transformed the way we think about light–matter interaction at the nanoscale. They also offer a favourable size, weight, power and cost metric compared to bulky optical elements such as lenses and prisms based on polished pieces of glass or moulded plastics. These valuable traits are especially relevant for use in many emerging applications, including wearable displays and sensors, autonomous navigation (robotics, automotive and aerospace), computational imaging, solar energy harvesting and radiative cooling. With the advent of advanced software and high-volume manufacturing processes, the promise of metasurfaces is becoming a practical reality and has already generated tremendous interest from industry. This Review discusses the rapid, recent advances towards transitioning metasurface science into real technologies, propelling the second metasurface revolution. Metasurface optics offer a very favourable size, weight, power and cost metric compared to bulky optical elements based on polished pieces of glass or moulded plastics, and these valuable traits are now propelling their use in many areas of technology.

Abstract Image

第二次光学超表面革命:从科学走向技术
光学超表面是一种巧妙的纳米结构薄膜,能够以无数种新的方式操纵光的流动。在过去的二十年中,我们目睹了作为其运作基础的基础科学的真正革命。因此,这些强大的光学元件现在可以提供以前从未见过的光学功能,并改变了我们对纳米尺度光-物质相互作用的看法。与笨重的光学元件(如基于抛光玻璃或模压塑料的透镜和棱镜)相比,它们还提供了有利的尺寸、重量、功率和成本指标。这些有价值的特性尤其适用于许多新兴应用,包括可穿戴显示器和传感器、自主导航(机器人、汽车和航空航天)、计算成像、太阳能收集和辐射冷却。随着先进软件和大批量制造工艺的出现,元表面的前景正在成为现实,并且已经引起了工业界的极大兴趣。本综述讨论了将超表面科学转化为实际技术,推动第二次超表面革命的快速,最近的进展。与基于抛光玻璃或模压塑料的笨重光学元件相比,超表面光学元件提供了非常有利的尺寸,重量,功率和成本指标,并且这些有价值的特性现在正在推动它们在许多技术领域的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信