Microbial Iron Utilization Pathways in Constructed Wetlands: Analysis of Substrates Affecting Iron Transformation, Absorption, and Utilization

IF 7.4 Q1 ENGINEERING, ENVIRONMENTAL
Xinyue Zhao, Yibo Shi, Lan Yang and Shih-Hsin Ho*, 
{"title":"Microbial Iron Utilization Pathways in Constructed Wetlands: Analysis of Substrates Affecting Iron Transformation, Absorption, and Utilization","authors":"Xinyue Zhao,&nbsp;Yibo Shi,&nbsp;Lan Yang and Shih-Hsin Ho*,&nbsp;","doi":"10.1021/acsestengg.4c0044810.1021/acsestengg.4c00448","DOIUrl":null,"url":null,"abstract":"<p >Iron materials are known to enhance the nitrogen removal efficiency in constructed wetlands (CWs) by coupling iron transformation with nitrogen removal. However, current research lacks detailed explanations of the microbial processes involved in utilizing iron substrates, such as iron transformation, cellular iron uptake, and metabolism, leaving a gap in the understanding of these connections. This study addresses this gap by constructing four microcosm CW systems using Fe–C, various ratios of pyrite, and zerovalent iron (ZVI) as substrates. Experimental results indicated that the iron transformation was the most thermodynamically favorable with pyrite. Microbial communities on pyrite: gravel in a 2:1 volume ratio (2P1G) exhibited a greater propensity for Feammox, with a 0.76% increase in the functional microbial network of Feammox and a 31.20% increase in the abundance of the <i>nirA</i> gene associated with Feammox process compared to the Fe–C group. Conversely, the iron transformation in the Fe–C group was thermodynamically less favorable. To maintain intracellular iron homeostasis, microorganisms in the Fe–C group increased the siderophore activity. The gene abundances related to the release and absorption of siderophore were 22.12% and 17.26% increased, respectively, compared to 2P1G. This research employs the siderophore indicators to elucidate the link between iron transport and nitrogen metabolism, providing insights for improving nitrogen removal in CWs.</p>","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":"5 2","pages":"366–376 366–376"},"PeriodicalIF":7.4000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T engineering","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestengg.4c00448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Iron materials are known to enhance the nitrogen removal efficiency in constructed wetlands (CWs) by coupling iron transformation with nitrogen removal. However, current research lacks detailed explanations of the microbial processes involved in utilizing iron substrates, such as iron transformation, cellular iron uptake, and metabolism, leaving a gap in the understanding of these connections. This study addresses this gap by constructing four microcosm CW systems using Fe–C, various ratios of pyrite, and zerovalent iron (ZVI) as substrates. Experimental results indicated that the iron transformation was the most thermodynamically favorable with pyrite. Microbial communities on pyrite: gravel in a 2:1 volume ratio (2P1G) exhibited a greater propensity for Feammox, with a 0.76% increase in the functional microbial network of Feammox and a 31.20% increase in the abundance of the nirA gene associated with Feammox process compared to the Fe–C group. Conversely, the iron transformation in the Fe–C group was thermodynamically less favorable. To maintain intracellular iron homeostasis, microorganisms in the Fe–C group increased the siderophore activity. The gene abundances related to the release and absorption of siderophore were 22.12% and 17.26% increased, respectively, compared to 2P1G. This research employs the siderophore indicators to elucidate the link between iron transport and nitrogen metabolism, providing insights for improving nitrogen removal in CWs.

Abstract Image

人工湿地微生物铁利用途径:影响铁转化、吸收和利用的基质分析
铁材料通过耦合铁转化和脱氮来提高人工湿地的脱氮效率。然而,目前的研究缺乏对铁底物利用中涉及的微生物过程的详细解释,如铁转化、细胞铁摄取和代谢,这使得对这些联系的理解存在空白。本研究以Fe-C、不同比例的黄铁矿和零价铁(ZVI)为底物,构建了四个微观连续体系,解决了这一空白。实验结果表明,黄铁矿对铁的相变最有利。体积比为2:1 (2P1G)的黄铁矿:砾石上的微生物群落表现出更大的Feammox倾向,与Fe-C组相比,Feammox的功能微生物网络增加了0.76%,与Feammox过程相关的nirA基因丰度增加了31.20%。相反,铁在Fe-C基团中的转变在热力学上不太有利。为了维持细胞内铁的稳态,Fe-C组的微生物增加了铁载体的活性。与2P1G相比,与铁载体释放和吸收相关的基因丰度分别提高了22.12%和17.26%。本研究利用铁载体指标阐明了铁转运与氮代谢之间的联系,为提高CWs的脱氮能力提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS ES&T engineering
ACS ES&T engineering ENGINEERING, ENVIRONMENTAL-
CiteScore
8.50
自引率
0.00%
发文量
0
期刊介绍: ACS ES&T Engineering publishes impactful research and review articles across all realms of environmental technology and engineering, employing a rigorous peer-review process. As a specialized journal, it aims to provide an international platform for research and innovation, inviting contributions on materials technologies, processes, data analytics, and engineering systems that can effectively manage, protect, and remediate air, water, and soil quality, as well as treat wastes and recover resources. The journal encourages research that supports informed decision-making within complex engineered systems and is grounded in mechanistic science and analytics, describing intricate environmental engineering systems. It considers papers presenting novel advancements, spanning from laboratory discovery to field-based application. However, case or demonstration studies lacking significant scientific advancements and technological innovations are not within its scope. Contributions containing experimental and/or theoretical methods, rooted in engineering principles and integrated with knowledge from other disciplines, are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信