Integrating Biological Phosphorus Removal with High-Rate Activated Sludge for Enhanced Settleability and Nutrient Management at Short Solids Retention Times

IF 7.4 Q1 ENGINEERING, ENVIRONMENTAL
Chengpeng Lee, Hau Truong, Khoa Nam Ngo, Ahmed AlSayed, Emily Karen Kin, Stephanie Fuentes, Xiaojue Chen, Haydée De Clippeleir* and George Wells*, 
{"title":"Integrating Biological Phosphorus Removal with High-Rate Activated Sludge for Enhanced Settleability and Nutrient Management at Short Solids Retention Times","authors":"Chengpeng Lee,&nbsp;Hau Truong,&nbsp;Khoa Nam Ngo,&nbsp;Ahmed AlSayed,&nbsp;Emily Karen Kin,&nbsp;Stephanie Fuentes,&nbsp;Xiaojue Chen,&nbsp;Haydée De Clippeleir* and George Wells*,&nbsp;","doi":"10.1021/acsestengg.4c0052410.1021/acsestengg.4c00524","DOIUrl":null,"url":null,"abstract":"<p >High-rate activated sludge (HRAS) processes operate at reduced hydraulic retention time and solids retention time (SRT) to minimize mineralization and enhance sludge digestibility. Enhanced biological phosphorus removal (EBPR) employs phosphorus accumulating organisms (PAOs) to uptake soluble phosphorus from wastewater, preventing nutrient pollution. However, the slow growth rates of PAOs relative to the aggressive SRTs (&lt;2 days) commonly used in HRAS present a potential conflict. This study aims to determine the feasible minimum aerobic SRT that maintains biological phosphorus (bio-P) removal, quantify phosphorus removal through biomass assimilation and bio-P pathways, and assess the impact of bio-P selection on HRAS sludge settleability. Two parallel bioreactors were operated for 246 days with real wastewater supplemented with acetate and phosphate to ensure a consistent feed source; one system was operated as an HRAS without EBPR and the other as an integrated HRAS and EBPR. Significantly, integrating EBPR with HRAS improved sludge settleability, leading to an enhancement in carbon capture. In continuous operation, bio-P performance deteriorated at aerobic SRT below 1.9 days and was strongly influenced by the influent’s volatile fatty acid to phosphorus ratio. Interestingly, Bio-P activity tests demonstrate the feasibility of integrating EBPR with HRAS at aerobic SRT as low as 1.1 days. These results highlight the cobenefits of EBPR integration, including enhanced phosphorus removal, carbon redirection, and settleability, underscoring the high potential for resource recovery from wastewater streams.</p>","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":"5 2","pages":"377–388 377–388"},"PeriodicalIF":7.4000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T engineering","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestengg.4c00524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

High-rate activated sludge (HRAS) processes operate at reduced hydraulic retention time and solids retention time (SRT) to minimize mineralization and enhance sludge digestibility. Enhanced biological phosphorus removal (EBPR) employs phosphorus accumulating organisms (PAOs) to uptake soluble phosphorus from wastewater, preventing nutrient pollution. However, the slow growth rates of PAOs relative to the aggressive SRTs (<2 days) commonly used in HRAS present a potential conflict. This study aims to determine the feasible minimum aerobic SRT that maintains biological phosphorus (bio-P) removal, quantify phosphorus removal through biomass assimilation and bio-P pathways, and assess the impact of bio-P selection on HRAS sludge settleability. Two parallel bioreactors were operated for 246 days with real wastewater supplemented with acetate and phosphate to ensure a consistent feed source; one system was operated as an HRAS without EBPR and the other as an integrated HRAS and EBPR. Significantly, integrating EBPR with HRAS improved sludge settleability, leading to an enhancement in carbon capture. In continuous operation, bio-P performance deteriorated at aerobic SRT below 1.9 days and was strongly influenced by the influent’s volatile fatty acid to phosphorus ratio. Interestingly, Bio-P activity tests demonstrate the feasibility of integrating EBPR with HRAS at aerobic SRT as low as 1.1 days. These results highlight the cobenefits of EBPR integration, including enhanced phosphorus removal, carbon redirection, and settleability, underscoring the high potential for resource recovery from wastewater streams.

Abstract Image

将生物除磷与高速率活性污泥相结合,在短固体停留时间内提高沉降性和养分管理
高速率活性污泥(HRAS)工艺在减少水力滞留时间和固体滞留时间(SRT)下运行,以最大限度地减少矿化并提高污泥的消化率。增强型生物除磷(EBPR)利用聚磷生物(PAOs)从废水中吸收可溶性磷,防止营养物污染。然而,相对于HRAS中常用的侵袭性srt(2天),PAOs的缓慢增长速度存在潜在的冲突。本研究旨在确定维持生物磷(bio-P)去除的可行的最小好氧SRT,量化通过生物质同化和生物磷途径去除的磷,并评估生物磷选择对HRAS污泥沉降性的影响。两个平行生物反应器在真实废水中添加乙酸和磷酸盐,运行246 d,以确保饲料来源的一致性;一个系统作为没有EBPR的HRAS运行,另一个系统作为HRAS和EBPR的集成运行。值得注意的是,EBPR与HRAS的结合改善了污泥的沉降性,从而增强了碳捕获。连续运行时,好氧SRT低于1.9 d时生物磷性能恶化,且受进水挥发性脂肪酸磷比的强烈影响。有趣的是,Bio-P活性测试表明,在低至1.1天的有氧SRT中,EBPR与HRAS结合是可行的。这些结果突出了EBPR集成的协同效益,包括增强除磷,碳重定向和沉降性,强调了废水流中资源回收的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS ES&T engineering
ACS ES&T engineering ENGINEERING, ENVIRONMENTAL-
CiteScore
8.50
自引率
0.00%
发文量
0
期刊介绍: ACS ES&T Engineering publishes impactful research and review articles across all realms of environmental technology and engineering, employing a rigorous peer-review process. As a specialized journal, it aims to provide an international platform for research and innovation, inviting contributions on materials technologies, processes, data analytics, and engineering systems that can effectively manage, protect, and remediate air, water, and soil quality, as well as treat wastes and recover resources. The journal encourages research that supports informed decision-making within complex engineered systems and is grounded in mechanistic science and analytics, describing intricate environmental engineering systems. It considers papers presenting novel advancements, spanning from laboratory discovery to field-based application. However, case or demonstration studies lacking significant scientific advancements and technological innovations are not within its scope. Contributions containing experimental and/or theoretical methods, rooted in engineering principles and integrated with knowledge from other disciplines, are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信