Jet Definition and Transverse-Momentum–Dependent Factorization in Semi-Inclusive Deep-Inelastic Scattering

IF 8.1 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Paul Caucal, Edmond Iancu, A. H. Mueller, Feng Yuan
{"title":"Jet Definition and Transverse-Momentum–Dependent Factorization in Semi-Inclusive Deep-Inelastic Scattering","authors":"Paul Caucal, Edmond Iancu, A. H. Mueller, Feng Yuan","doi":"10.1103/physrevlett.134.061903","DOIUrl":null,"url":null,"abstract":"Using the color dipole picture of deep inelastic scattering (DIS) and the color glass condensate effective theory, we study semi-inclusive jet production in DIS at small x</a:mi></a:mrow></a:math> in the limit where the photon virtuality <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:msup><c:mrow><c:mi>Q</c:mi></c:mrow><c:mrow><c:mn>2</c:mn></c:mrow></c:msup></c:mrow></c:math> is much larger than the transverse momentum squared <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mrow><e:msubsup><e:mrow><e:mi>P</e:mi></e:mrow><e:mrow><e:mo>⊥</e:mo></e:mrow><e:mrow><e:mn>2</e:mn></e:mrow></e:msubsup></e:mrow></e:math> of the produced jet. In this limit, the cross section is dominated by aligned jet configurations, that is, quark–antiquark pairs in which one of the fermions—the would-be struck quark in the Breit frame—carries most of the longitudinal momentum of the virtual photon. We show that physically meaningful jet definitions in DIS are such that the effective axis of the jet sourced by the struck quark is controlled by its virtuality rather than by its transverse momentum. For such jet definitions, we show that the next-to-leading order cross section admits factorization in terms of the (sea) quark transverse momentum dependent distribution, which in turn satisfies a universal Dokshitzer-Gribov-Lipatov-Altarelli-Parisi and Sudakov evolution. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"6 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.061903","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Using the color dipole picture of deep inelastic scattering (DIS) and the color glass condensate effective theory, we study semi-inclusive jet production in DIS at small x in the limit where the photon virtuality Q2 is much larger than the transverse momentum squared P2 of the produced jet. In this limit, the cross section is dominated by aligned jet configurations, that is, quark–antiquark pairs in which one of the fermions—the would-be struck quark in the Breit frame—carries most of the longitudinal momentum of the virtual photon. We show that physically meaningful jet definitions in DIS are such that the effective axis of the jet sourced by the struck quark is controlled by its virtuality rather than by its transverse momentum. For such jet definitions, we show that the next-to-leading order cross section admits factorization in terms of the (sea) quark transverse momentum dependent distribution, which in turn satisfies a universal Dokshitzer-Gribov-Lipatov-Altarelli-Parisi and Sudakov evolution. Published by the American Physical Society 2025
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信