Yuto Kajino, Yuta Tanaka, Yukiko Aida, Yusuke Arima and Kaoru Tamada
{"title":"Transfer printing of perovskite nanocrystal self-assembled monolayers via controlled surface wettability†","authors":"Yuto Kajino, Yuta Tanaka, Yukiko Aida, Yusuke Arima and Kaoru Tamada","doi":"10.1039/D4NR05088F","DOIUrl":null,"url":null,"abstract":"<p >Lead halide perovskite nanocrystals (LHP NCs) have attracted significant attention as next-generation semiconductor nanomaterials due to their near-unity photoluminescence quantum yields and tunable emission wavelengths. Despite their outstanding optical properties, their instability makes it difficult to apply conventional lithography techniques to LHP NC films, which hinders their application in nano-optoelectronics. To overcome this problem, in this work, we propose solvent- and heat-free contact printing technologies for the transfer and microfabrication of LHP NC self-assembled monolayers, employing viscoelastic stamps and wettability-controlled solid substrates. To proceed with multistep transfer of NC films, it is necessary to control the adhesion force between the NCs and the substrate at each step. There is also another requirement concerning the affinity between LHP NCs and substrates to fabricate a spatially uniform LHP NC self-assembled monolayer by spin-coating. To meet these two requirements, the initial substrates for spin-coating were treated with a mixture of fluoroalkyl and alkyl silanes (with a mixing ratio of 0.85 : 0.15), whereas those for transfer were treated with hexamethyldisilane (HMDS). The micropatterned LHP NC monolayers were successfully fabricated by employing patterned viscoelastic stamps. This approach using a back-to-basics technique provides a simple and reliable process for integrating LHP NCs into advanced nano-optoelectronic devices.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" 14","pages":" 8651-8659"},"PeriodicalIF":5.1000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/nr/d4nr05088f?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d4nr05088f","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lead halide perovskite nanocrystals (LHP NCs) have attracted significant attention as next-generation semiconductor nanomaterials due to their near-unity photoluminescence quantum yields and tunable emission wavelengths. Despite their outstanding optical properties, their instability makes it difficult to apply conventional lithography techniques to LHP NC films, which hinders their application in nano-optoelectronics. To overcome this problem, in this work, we propose solvent- and heat-free contact printing technologies for the transfer and microfabrication of LHP NC self-assembled monolayers, employing viscoelastic stamps and wettability-controlled solid substrates. To proceed with multistep transfer of NC films, it is necessary to control the adhesion force between the NCs and the substrate at each step. There is also another requirement concerning the affinity between LHP NCs and substrates to fabricate a spatially uniform LHP NC self-assembled monolayer by spin-coating. To meet these two requirements, the initial substrates for spin-coating were treated with a mixture of fluoroalkyl and alkyl silanes (with a mixing ratio of 0.85 : 0.15), whereas those for transfer were treated with hexamethyldisilane (HMDS). The micropatterned LHP NC monolayers were successfully fabricated by employing patterned viscoelastic stamps. This approach using a back-to-basics technique provides a simple and reliable process for integrating LHP NCs into advanced nano-optoelectronic devices.
期刊介绍:
Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.